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Resumé

Le travail présenté dans cette thèse consiste de l’étude expérimentale de deux systèmes

de lasers à semiconducteurs.

Dans la première partie, nous étudions la dynamique modale des lasers à émission

latérale, dits bulk. L’émission de ces lasers présente en général un seul mode de

cavité interne. Dans certaines régions des paramètres, toutefois, on observe bista-

bilité et “mode-hopping” induit par le bruit entre deux modes de cavité principaux.

Nous analysons expérimentalement cette dynamique modale qui peut être décrite en

une dimension en termes d’un (quasi-)potentiel bistable et bruit, par une équation de

Langevin. On observe que une modulation symétrique du courant de pompage du laser

modifie la symétrie d’émission entre les deux modes. Une hypothèse dynamique est

donc formulée, faisant intervenir, dans l’équation décrivant le comportement temporel

modal, les fluctuations du courant comme un terme de bruit multiplicatif. Dans un

tel système il est possible observer le phénomène de résonance stochastique. Enfin, a

partir des équations d’évolution des variables du laser, en considérant les échelles tem-

porelles relatives, il a été possible dériver une équation de Langevin mono dimension-

nelle, avec bruit multiplicative, qui bien reproduit la caractérisation expérimentale.

La deuxième partie est consacrée au contrôle expérimental des “solitons de cavité”.

Dans ce travail, ces structures localisées non linéaires sont crées dans le plan trans-

verse des lasers à cavité verticale (VCSELs) avec injection externe. Nous étudions leur

déplacement sous l’influence de forces externes, montrons les effets des gradients de

phase et intensité dans le champs d’injection et démontrons la possibilité de construire

un registre à décalage optique en utilisant leurs propriétés. Enfin, en utilisant une

masque de phase reconfigurable pour l’injection, on montre que, grâce leur plasticité,

les solitons peuvent être fixés dans des différentes configurations dans le plan trans-

verse, comme prévu par les résultats théoriques. Ces résultats sont encourageants en

vue de possibles applications où le solitons de cavité peuvent constituer les bits (1-0)

d’un dispositif de stockage et/ou routage optique reconfigurable.
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fait on essay?).

I thank Salvador Balle for everything, because a big part of this work is due to him.

And Stefano Lepri for the help he gave me during the very good collaboration on

bulks. Then Gianni Giacomelli (echee’, miha mi dimentico!) deserves a big place

here, for physics surely, but also for all he made me eat there in Florence! (lo Spera,

la trattoria sui colli, la degustazione d’olio extra vergine, la pappa al pomodoro, meglio

se smetto..)

I thank Gabriel Mindlin, who helped me a lot, also giving the right suggestion for the

work on bulk, and I hope to meet him again.

Then I give thanks to Gattobigio brothers Gianluca e Mario (goodbye to Italy? il

negozio di bici?), Frédéric Hebert, Stefania Residori, René Rojas, Gianluca Lippi,
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I. Introduction

I.1. Origins of Laser

Tracing back to the origins of the laser history, one inevitably arrives to the beginning

of the twentieth century when quantum mechanics was changing the perspectives

of older physics and in general the look of the modern society to the microscopic

world. Einstein was one of the most important actors at that time. In 1905 his

work on the photoelectric effect overcame the problems of the classical theory on

the interaction light-matter, introducing the fundamental hypothesis that was the

base of the modern physics, the quantization of the electromagnetic field. In 1916 he

proposed a more detailed understanding of how photons interact with atoms and their

electronic energy levels [1]. The three fundamental mechanisms of interaction were

described: spontaneous emission, stimulated emission and absorption. The energy

difference between two atomic levels was assumed to be discrete so an atom can

absorb a photon only if its energy gap results equal to the energy hν of the photon.

An atom can also emit a photon with energy equal to the energy gap, falling from

its excited state to the lower one. This can occur spontaneously (so the rate of the

emission would depend on the upper level lifetime), or stimulated by another photon

which will generate an identical photon (both will have the same momentum vector

and phase).

The work of Einstein was almost forgot until after World War II, when the interest

of researchers focused again on stimulated emission. This is the working mechanism at

the base of modern laser devices. A clear experimental observation of such interaction

between light and atoms was a hard task up to 1958. In fact in order to have a

measurable stimulated event, one has to find the way to keep many atoms in the

medium in their excited state. Then in principle using just one photon like a seed

would produce a cascade of coherent light coming from stimulated emission. As all

natural systems and materials tend to populate their ground state at expense of

higher energy levels because of thermalization, an external mechanism should be able

to achieve the so called population inversion. From the theory developed by Einstein

it results that the net power generated by the atoms interacting with the radiation is

P = (N2 −N1)
A21hν

ehν/KBT − 1
(I.1)
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I. Introduction

where A21 is the rate of spontaneous emission, N1 (N2) the population of the lower

(upper) state of the atom and T the temperature. Not surprisingly the output power is

proportional to the difference in the population of the two levels (N2−N1). Stimulated

emitted light can grow up inside the material only if N2 > N1.

In 1953, Charles H. Townes and graduate students James P. Gordon and Herbert J.

Zeiger produced the first maser, a device operating on similar principles to the laser,

but producing microwave rather than optical radiation. This early system, whose

development was connected with military researches for radar systems, could amplify

a 24 GHz radiation in a resonant cavity filled with ammonia but was incapable of

continuous output [2]. Nikolay Basov and Aleksandr Prokhorov in the Soviet Union

worked independently on the quantum oscillator and solved the problem of continuous

output by using more than two energy levels. This system could release stimulated

emission without falling to the ground state, thus maintaining a population inversion.

Townes, Basov and Prokhorov shared the Nobel Prize in Physics in 1964 “for funda-

mental work in the field of quantum electronics, which has led to the construction of

oscillators and amplifiers based on the maser-laser principle”.

The way to optical frequencies was paved, and the first (pulsed) LASER (Light Am-

plification by Stimulated Emission of Radiation) was made by Theodore H. Maiman

in 1960 [3] at Hughes Research Laboratories in Malibu, California, beating several

research teams including those of Townes at Columbia University, and Arthur L.

Schawlow at Bell Labs. Maiman used a solid-state flashlamp-pumped synthetic ruby

crystal to produce red laser light at 694 nanometers wavelength. Maiman’s laser,

however, was only capable of pulsed operation. Later in the same year the Iranian

physicist Ali Javan, together with William Bennet and Donald Herriot [4], made the

first gas laser using helium and neon. This type of laser (He-Ne) had been the domi-

nant laser for the next 20 years until cheap semiconductors have appeared.

However excitement about lasers began to fade, they were called “solution looking

for a problem”. But as it often happens the military interests helped in progress of

science development. For Vietnam war the laser-based radar, targeting, and recon-

naissance system was created [5]. Environmental and later energy concerns led to in-

creased funding for laser research investigating fields such as air-pollution monitoring

and energy applications. The other important reason for researching of laser tech-

nology was its attractiveness for use in communication since the amount of coherent

information that an electromagnetic wave can carry is proportional to its frequency,

and optical light has frequencies much higher than radio and microwaves.
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I.2. Semiconductor lasers

I.2. Semiconductor lasers

I.2.1. Principles of operation

The possibility of using semiconductors in order to achieve stimulated emission was

first considered by Von Neumann in 19531 [10]. Then the transition between conduc-

tion and valence bands in semiconductors was considered by Bernard and Douraffourg

[11] in 1961. In the Soviet Union, N. Basov and D. N. Nasledov were also considering

how to achieve population inversion in a semiconductor [12].

E

k

Figure I.1.: Schematic representation of the band structure of a direct semiconductor

laser at room temperature. Filled (empty) circles correspond to electrons

(holes). An electron recombining with a hole can give rise to a photon.

The knowledge developed for atomic lasers had to be translated to semiconductors.

These are too different from atoms and a simple description in terms of two energy

levels could not be possible. Unlike the atom, the energy states of the electrons in

semiconductors occur as energy bands instead of discrete levels. These bands arise due

to the ordered structure of atoms in the atomic lattice of the semiconductor crystal.

The bands of interest are the valence and conduction bands, and the forbidden energy

interval between them is referred as energy gap. They can be modeled with parabolic

shape as a function of the momentum k of the electron and in direct semiconductors

the maximum of the valence band corresponds to the minimum of the conduction

band, as in fig.I.1. The description of the electronic state is given by the Fermi-

Dirac distribution. In thermal equilibrium at 0 oK, all the allowed energies below

the so called Fermi energy Ef are occupied and above it they are empty. For higher

temperatures this distribution is smoother and some states above Ef are occupied

and some states under Ef are empty. In pure semiconductors Ef is close to the center

of the bandgap, therefore at 0 oK the conduction band is empty and the valence

1For a review of the history of semiconductor lasers see also [6][7][8][9]
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I. Introduction

band is completely filled. Anyway the bandgap (of the order of 1 eV) allows at room

temperatures the passage of electrons to the conduction band and holes to the valence

band (holes are vacancies of electrons, and are treated as quasi-particles).

The idea at the base of semiconductor lasers is then to use the recombination of

electrons falling from the conduction to the valence band (electron-hole recombina-

tion, which has characteristic time of 10−9 s) as it was for the two energy levels in

atoms, in order to produce a photon. Here the difference with a simple two levels

medium comes from the dependency of the transition energy over the momentum of

the electron. So in first approximation the laser has an inhomogeneous gain profile,

as a gas laser where Doppler effect is taken into account for the medium. Not every

electron-hole recombination gives rise to a photon (phonons can also be produced,

giving an increase of the temperature), but the quantum efficiency of semiconductor

lasers can be incredibly high (>90%).

The main ingredients that were proposed (and are now basilar for semiconductor

lasers) are the use of a p-n junction and the need for a flow of electric current across it.

A p-n junction is a structure made by two semiconductors placed in contact. One of

them is treated (n-doped) in order to enlarge the number of electrons in the conduction

band, the other is p-doped to present more holes in the valence band. This is done by

inserting some impurities in the crystal (electronic donors for the n−type, acceptors

for the p−type). This changes the electronic distribution, and the level Ef changes

accordingly (closer to the conduction band in the n−type, closer to the valence band

for the p−type).

When the two n and p semiconductors are put together in order to create the p−n
junction, the thermal equilibrium is achieved bending considerably the energy bands

as in fig.I.2 (a). At equilibrium the Fermi energy level is the same over the entire

junction, and no motion of electrons or holes is possible along the junction because

of the potential barriers created. If a positive voltage is applied and the junction

is forward biased, as in fig.I.2 (b) the material is no longer in thermal equilibrium.

However it can be assumed in a good approximation that electrons and holes are in

thermal equilibrium inside their conduction and valence band respectively. This is

due to the fact that the thermalization time of electrons and holes is extremely short

(10−13 s). As long as this quasi-equilibrium condition is satisfied, electrons and holes

with different momentum are all coupled and the laser saturates homogeneously, in

spite of the inhomogeneous gain profile. This feature makes the semiconductor laser

be at the border between the two classes of homogeneous and inhomogeneous lasers

[14].

The Fermi level then splits, for a biased device, into two quasi-levels, corresponding

to the distribution of electrons in the conduction band (Fc) and holes in the valence

10



I.2. Semiconductor lasers

Figure I.2.: Band edge structure for a p − n junction in absence (a) and in presence

(b) of the external voltage [13].

band (Fv). In a biased junction then the amount of electrons and holes in the depletion

region is greatly increased creating a small region of population inversion, where

radiative recombination can occur.

I.2.2. Edge emitting lasers

The first experimental studies date to 1962, when the group of G. Fenner in New York

operated the first semiconductor diode laser (September 16, Sunday![15]). Within less

than one month three other groups succeeded in laser operation in semiconductor de-

vices. The first semiconductor laser with visible emission was demonstrated later the

same year by N.Holonyak [7]. As with the first gas lasers, these early semiconductor

lasers could be used only in pulsed operation, and only when cooled to liquid nitrogen

temperatures (77 K). They were pumped with high current pulses lasting only few

microseconds. The efficiency of these first homojunctions was not able to carry the

lasers to the interest of industry, as it happened after the creation of the first het-

erojunctions. In these lasers (called bulk edge emitters) the light propagates then in

the plane of the junction, across a rectangular waveguide. The mirrors of the cavity

are formed by cleaving the semiconductor wafer and polishing the facets. Then the

reflectivity is due to the change in index from the material to the air, and is of the

order of 30%.
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I. Introduction

Figure I.3.: Energy band structure for a double heterostructure in absence (a) and in

presence (b) of the applied voltage.

In 1963 H. Kroemer [16], and independently in URSS Z. Alferov, suggested (and in

2000 they received the Nobel prize for their idea) to sandwich a semiconductor with

the desired band gap between materials with larger band gaps. This is called a double

heterostructure and it is shown in fig.I.3. In this way a more effective confinement of

carriers is possible, increasing the carrier density and lowering the threshold current.

The emitted photons are then also confined in the active central region which has

lower band gap and higher index of refraction. The junction acts at the same time

as a waveguide for the photons and a potential well for the inverted carriers, so

stimulated emission is greatly increased. In this way the first semiconductor laser

with low threshold could appear in 1969 [17], and this was the beginning for their

widespread use that contributes to development in many fields nowadays. From bar

code readers (since early ’80), to fast telecommunications (so Internet) or CDs readers

and writers, semiconductor lasers have slowly but effectively entered in everyday life

of many millions of people.

Many improvement have been done in bulk edge emitting lasers since the first

realizations. Additional confinement mechanisms are present nowadays in order to

increase the carrier density in the active area. The early gain guided lasers (i.e.

where the confinement of carriers in the plane of the junction is determined simply by

the current profile) have been substituted by more complex index guided laser, where

a suitable lateral guiding profile is tailored inside the active region. Then quantum

12



I.2. Semiconductor lasers

well and multi-quantum well lasers appeared, where the thickness of the active region

(the quantum well) reaches and become smaller than the emitted wavelength. These

are the devices most used today, and it becomes difficult to find in the market old

structures like bulk edge emitters.

I.2.3. Vertical Cavity Surface Emitting Lasers (VCSELs)

Edge emitting lasers have some property that can become a problem for specific

applications. The length of the cavity of the order of hundreds of microns allows in

general for longitudinal multi-mode operation. In fact the typical distance between

two adjacent longitudinal modes is in these cavities of the order of hundreds of GHz,

while the width of the gain curve is of the order of thousands of GHz. Then tens of

modes can experience very similar gain and due to non linear coupling, multi-mode

operation or instabilities are often found in experiments. Another problem making

difficult the coupling with fibers for example, arises from the strong elliptical profile of

the emitted beam, due to the difference between the two transverse confinements (i.e.

diffraction) of the optical mode propagating in the plane of the active region. Finally

because cleaving is a step of the fabrication, they cannot be tested before having been

packaged.
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Current
Emission

Metallic contact

p−doped DBR reflector

Active layer

n−doped DBR reflector

Substrate

Figure I.4.: Schematic structure of a VCSEL.

VCSELs give a solution to these problems. They are semiconductor lasers with

the cavity oriented perpendicular to the active layer, as in fig.I.4. So, the beam is

emitted and guided vertically. The cavity (tens of microns) is much smaller than the
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I. Introduction

one of bulk lasers, and its free spectral range is larger than the gain curve width, so

just one longitudinal mode is intrinsically possible. The very thin active layer (sub-

wavelength single or multiple quantum well) gives low value of the single passage

gain, so a very good cavity is necessary. The mirrors then cannot be formed by

just the interface between material and air (this gives 30% of reflectivity), so the

interferometric structure of distributed Bragg reflectors is used and reflectivities of

the order of 99.9% are achieved. The placement of the thin active layer along the

cavity is an important parameter, and it is placed usually on one antinode of the

standing wave created into the cavity in order to increase the gain.

Once the wafer is grown, a circular ring electric contact is placed at the top of

the cavity, in order to inject the bias current. In some cases a circular dielectric

ring is placed into the cavity to better confine the current and light. In this way

many lasers can be found over the matrix and tested independently. The result is a

perfect circular emitted beam, with high degree of coherence and low values for the

threshold current. The problem related to the cylindrical aperture of these kinds of

lasers is that no mechanism for fixing the polarization exists (while for edge emitters

the polarization is fixed by the active layer), so polarization instabilities occur above

threshold between the two possible orthogonal states imposed by the crystal. Other

geometries are possible, as for bottom emitting VCSELs, where the emission of light

is done trough the substrate layer.
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I.3. Dynamical classification of lasers

The usual approach to model the interaction between material and optical field in a

laser is based on the so called semi-classical approximation. It consists in the quantum-

mechanical description of the gain medium, while the field is treated classically. This

approximation is valid for all the experiments where an high number of photons is

involved, as in our case.

The Maxwell-Bloch equations describe the interaction of a set of homogeneously

broadened two-level atoms with a single mode field in the slowly varying amplitude

approximation. The dynamics of the relevant variables is then driven by the following

coupled differential equations

Ė = −iωcE − gP − kE (I.2)

Ṗ = −iωaP − gEN − γ⊥P (I.3)

Ṅ = −2g(EP ∗ − E∗P ) − γ‖(N −No) (I.4)

where E is the complex field amplitude, P the complex polarization, N the population

inversion, and k, γ⊥ and γ‖ are the respective loss rates. No is the population inversion

which would be established in absence of coupling, g is the coupling constant in terms

of the transition dipole moment, while ωa and ωc are the atomic and cavity frequencies

respectively[18][19].

In order to limit the number of dynamical variables, it is common to limit the

description to single-mode lasers in homogeneously broadened media, so that the

entire dynamics is characterized by the three variable: field amplitude, polarization

and population inversion. In this case, depending on the relative decay rates k, γ⊥
and γ‖, an useful dynamical classification of lasers has been introduced in [20][21].

For class A lasers (mainly dye lasers) both the polarization and the population

inversion decay on much shorter time scales than the electric field (γ⊥ ' γ‖ � k). In

this case it is possible to adiabatically eliminate the dynamics of P and N , as they

immediately follow the slow variations of the field. The system dimension is then

reduced to one, with just one differential equation for E, and a fixed point is rapidly

reached.

In class B lasers (for example solid-state lasers as Ruby, Nd:Yag, Ti:sapphire, CO2

and semiconductor lasers) only the polarization decays on fast time scales, while the

decay rates of field and population inversion are comparable (γ⊥ � γ‖ ' k). The

polarization is then an adiabatic follower of the other two variables, and the dynamical

behavior is described by two coupled non-linear equations for the field and population

inversion. In this case a single fixed point or periodic oscillations are possible solutions

for the steady state, as a bidimensional manifold hosts the dynamics of the system.
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I. Introduction

Deterministic chaos is not possible unless increasing the number of degrees of freedom

for example modulating a parameter, injecting an external field, introducing feedback

or increasing the number of active modes.

Finally, for class C lasers (some optically pumped gas lasers, Argon and Krypton

ion lasers) the three decay rates k, γ⊥ and γ‖ are of the same order of magnitude.

The dynamics of such lasers needs the full set of the Maxwell-Bloch equations to be

described, and the dimension of the system is high enough to display single-mode

instabilities and chaotic dynamics. In fact it was recognized by Haken [22] that the

Maxwell-Bloch equations can be transformed in the famous model of Lorentz, one of

the first system where sensitive dependence from initial conditions, a fingerprint of

deterministic chaos, has been discovered.

16



II. Dynamics of longitudinal modes in

bulk semiconductor lasers

Abstract:
This part of the thesis concerns the analysis of the dynamics displayed by the longi-

tudinal modes of bulk edge emitting semiconductor lasers. The modal dynamics, that

in the past was called mode hopping [23][24], is experimentally studied by means of

statistical tools. A dynamical interpretation in terms of a one-dimensional potential

and noise is possible in the region of parameters where two coexisting cavity modes

are involved. A single stochastic differential equation is then supposed to drive the

temporal modal behavior. We observe that the symmetry of the modal emission is af-

fected by current fluctuations. From these measurements we formulate the hypothesis

that current fluctuations act as a multiplicative noise term in the stochastic equation

of the system. We show that stochastic resonance [25] can be demonstrated in this

system. Finally the rate equations of the laser are reduced, under some assumptions

in the region of mode-hopping, to a single stochastic differential equation, and good

qualitative agreement is found with the experimental characterization. The theoretical

treatment makes possible to relate the experimental dynamical observables to the in-

ternal parameters of the laser.

In general a big effort is done by constructors in order to grow semiconductor diodes

that lase in only one longitudinal mode, i.e. with high degree of temporal coherence.

Applications often need this characteristic. Bulk semiconductor lasers generally do

operate in a single longitudinal mode, but some regions of instabilities always exist,

with a detrimental effect over the spectral purity of the emission. So, from the point

of view of applications, it is useful to explore these regions in order to understand

the underlying mechanisms and possibly to avoid them. From a dynamical point of

view, on the other hand, these regions of instabilities are much more interesting than

a perfectly stable behavior.

In bulk semiconductor lasers a dynamical scenario for instabilities is bistability

between two longitudinal modes. This means that, in given regions of the parameters

(current and temperature of the laser), two cavity modes may coexist, but their strong
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

mutual coupling prevents the emission of both modes at the same time. Therefore

the temporal behavior of the two modes consists of random switchings in antiphase

one with respect to the other (i.e. with cross correlation close to -1), the active

mode carrying almost the total emitted power. The internal and external sources of

noise drive these jumps, so, in the regions of instabilities, each mode can be active

for intervals of time randomly distributed, ranging from few µs to ms before being

replaced by the other. On the contrary, the total emitted intensity (which is the sum

of the intensities of these two main modes) is always constant, and no (or very small)

signature of the underlying frequency dynamics is visible unless a diffractive element

is used in the monitoring apparatus.

Since the total intensity output remains constant, the two modes can be described

as just a one-dimensional system. A simple and useful analogy with this system

is the motion of a particle in a bistable (or double well) potential where noise is

present. The particle remains in one potential well fluctuating under the effect of

noise. This lasts until the strength of the stochastic force is high enough to win

the potential barrier between the wells and to bring the particle to the other side.

Each stable point (each minimum of the potential) corresponds to the switched-on

solution for one mode together with the switched-off solution for the other, while

the position of the particle at every time gives the instantaneous ratio between their

powers. This analogy can be formalized writing the rate equations for the laser and

reducing them to a one-dimensional problem, using the previous argument and time

scales considerations. Defining the same variable in the experiment and in the model,

the double well potential driving the dynamics of the two modes appears in the reduced

equation, reproducing the experimental observations.

We analyze experimentally the changes in the modal dynamics due to a time de-

pendent pumping current (i.e. when a modulation or noise is injected into the cur-

rent), and we observe some unexpected effects over the symmetry of the potential.

These experimental observations indicate that current fluctuations enters in the one-

dimensional characterization as a multiplicative term. This is in agreement with the

results of the reduced model. Indeed multiplicative noise can be responsible for a

change in the symmetry of the solutions of stochastic differential equations.

It is worth noting that mode hopping has been observed also for the two possible

states of polarization in vertical cavity surface-emitting lasers (VCSELs) [26][27]. A

very similar phenomenology is found in these different devices. The rate equations

described in sec.II.6 are in fact very similar to that used in the description of polar-

ization modes in VCSELs [6][28].

This chapter is organized as follows. In sec.II.1 we describe the experimental set-up
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used for the measurements, then in sec.II.2 we present the general characterization of

the bistability of the system by means of time-integrated measurements. In sec.II.3 we

resolve the temporal behavior, and we give a statistical characterization of the mode-

hopping. The condition of constant bias current will be removed in sec.II.4, where

we show the effects of a symmetric modulation of the bias current over the symmetry

of the experimental potential. These are interpreted in terms of the multiplicative

parameter in the one dimensional description. In sec.II.5 we show that stochastic

resonance is possible in this system both avoiding and using the multiplicative nature

of the pumping current. Finally in sec.II.6 we describe the rate equations of the laser

and their reduction to a one dimensional problem, that qualitatively well reproduces

the experimental findings, in terms of a bistable potential with a multiplicative term

due to current fluctuations.
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

Figure II.1.: Experimental set-up. C: collimator, OI: optical isolator, Ls: lenses, G:

diffraction grating, M: mirror

II.1. Experimental set-up

In our experiment we have analyzed two kinds of bulk lasers, three Hitachi HLP1400

and two Sharp LT021MD. Both edge emitting, they have a GaAlAs double-hetero-

structure with a bulk active region and cleaved, uncoated facets. The wavelength

separation between consecutive longitudinal-modes is around 0.3 nm for both lasers,

and the laser emission is in a single-transverse mode with a wavelength around 840

nm for the Hitachi Hlp 1400 and 780 nm for the Sharp LT021MD. All the tested

lasers have qualitatively the same dynamical properties, and in the following we will

provide a description for the general features they all have in common. Anyway some

quantitative detail can be different, as for example the absolute value of the critical

parameters where instabilities occur, as it will be defined in the following (sec.II.2).

Even if our aim is a general understanding of the dynamical properties more than

an accurate device-dependent understanding of each system, the majority of the ex-

perimental observations discussed and showed in this work will be focused on one of

the Hitachi HLP1400 devices. This choice is due just to the fact this particular device

is widely studied in the literature and some details of the parameters space result to be

useful to particular applications that we have tested, as for stochastic resonance (see

II.5). This GaAlAs bulk laser has a cavity length of approximately 300 µm and the

frequency spacing between internal cavity modes is 125 GHz. The reflectivity of the

cavity mirrors is given by the interface and index difference between semiconductor

and air, and it is estimated R ' 35%.
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II.1. Experimental set-up

We need to separate in space the different frequency components in the laser beam.

This is possible sending the collimated beam onto a diffraction grating with 1200

lines/mm in grazing incidence in order to illuminate the highest number of lines. The

actual experimental set-up is shown in fig.II.1. The laser output needs to be coupled

with an AR-coated collimator (C) to compensate the diffraction from the small laser

output facet (width ' 10µm, height ' 2µm). In order to increase the resolution of

the diffraction element (G), we use it in a double passage scheme. The first order

is sent again onto the grating (by the mirror M1) and the first order coming from

this last reflection (and going back to the laser) is sent by mirror M2 to the detection

system. The resolution at this step is sufficient to separate spatially two consecutive

modes of the internal cavity of the laser. An optical isolator prevents the feedback

from the dispersion and detection system. The optical signals of the two longitudinal

modes are detected by two avalanche photo diodes (APDs) with a bandwidth of 1.5

GHz and the time traces are recorded simultaneously in a Lecroy 7200 oscilloscope

(500 MHz analogue bandwidth, 1 GS/s). The zero order (the simple reflection) of

the grating can be used to monitor the total intensity, which can be sent to an APD

detector (same as before) or to an Optical Spectrum Analyzer, with resolution of 0.06

nm. The laser package temperature is stabilized up to 0.01oC and the laser current is

controlled with a stable (up to 1 µA) power supply.
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

II.2. Parameters space

We give in this section a general description of the phenomenological properties of

the laser. We will describe the behavior of the system in its free running regime by

means of time averaged measurements. We will find then in the parameters space the

region of bistability where hopping between two longitudinal modes occurs.

The two experimental parameters are the bias current J of the diode and the

temperature of its substrate Tsub, which is controlled by a Peltier element. Dealing

experimentally with the substrate temperature is more difficult than with the bias

current, because of the high thermal capacity of the laser package that makes long

(seconds) the time needed to reach the thermal equilibrium once the Peltier driver

settings are changed. All the following measurements have been taken at steady

temperature of the whole laser package.

Regarding the role of the bias current J , in principle it involves many different

and contrasting effects. It affects the carrier density inside the active region as the

active region temperature T , which is changed by Joule heating. In fact, the resis-

tance of the diode is few Ohm so the power dissipated in heat is of the order of few

tens of mW at a typical current of 100 mA. Even subtracting the emitted power,

which is only few mW, it is clear that the heating inside the active region becomes

important, so T becomes coupled to J . From a microscopic point of view, the elec-

tron distribution in the conduction band is affected by the temperature T according

to the Fermi-Dirac probability distribution dN , which has a term proportional to

dE
√
E/(1 + exp[(E − Efc)/KBT ]) in bulk lasers [14]. Therefore an increase of the

temperature makes the distribution larger towards higher energies, while its peak de-

creases towards lower energies as shown qualitatively in fig.II.2. The increase of the

pumping current, generating an increase of the active region temperature, then has

the effect of a red shift of the gain peak.

On the other hand the index of refraction of the host material is also affected by

the active region temperature T . For GaAs the temperature dependence of the re-

fractive index has the typical value of 2 10−4K−1[29]. Then the index increases with

increasing temperature, and both the mode wavelength λ and the mode spacing ∆λ

are affected. Therefore the entire comb of cavity modes red shifts increasing the cur-

rent. Other effects are taken into account in the theory of semiconductors and are

present inside the active medium, such as band filling and band-gap renormalization

[14]. The former induces a blue-shift and an increase of the gain peak, together with

a broadening of the gain curve towards high energies. The latter is due to the screen-

ing effect of the Coulomb interaction between electrons and holes and determines a

red-shift of the gain peak. In order to find which are the dominant effects in our

devices as the current is increased, it is necessary to observe the experimental optical

22



II.2. Parameters space
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Figure II.2.: Carrier distribution shape as a function of the energy for a bulk laser for

three increasing temperatures 0 = T0 < T1 < T2.

spectrum.

In fig.II.3 we show the optical spectrum (integrated over a time interval of the

order of 2 s) as a function of the bias current J , keeping fixed the temperature of

the substrate Tsub at 19.7oC. For low current the emission is not yet coherent but the

spontaneous emission is already filtered by the Fabry-Perot transmission function.

For this temperature the laser threshold is reached around 81 mA, where the emission

becomes single-mode. We will refer to the mode active at threshold as “mode (−)”.

For higher levels of current the identity of the active mode changes. Even though

the emission is almost always mono-mode, mode (−) loses its stability in a small

region around 87 mA, where the next mode towards higher wavelengths (“mode (+)”)

switches on. We call this region of parameters transition or switching region. This is

the evidence of the red-shift of the gain curve with increasing current.

The global identity red-shift of the active mode, as the current is increased, can

be explained in first approximation with a lower red-shift rate of the resonant comb

of modes (which is visible as a slight slope of each horizontal line in fig.II.3) with

respect of that of the gain curve [30][31]. However this general physical mechanism

alone cannot explain the particular behavior of each device, as for example transitions

between two modes separated by many free spectral ranges, as around 118 mA in

fig.II.3. More complex microscopic effects should be taken into account, and a detailed

description would necessarily become device-dependent. In our work we have tried to

find a general dynamical description of such transitions involving two modes, studying

the properties they all have in common. This means that even if we focus the following

23



II. Dynamics of longitudinal modes in bulk semiconductor lasers

78

Current (mA)

842

840

838

836

W
av

el
en

gt
h 

(n
m

)

88 98 108 118 128

Figure II.3.: Integrated optical spectrum as a function of the bias current J . Each

measured optical spectrum has been normalized to the total intensity

output in order to show the mode suppression ratio at each current value.

The normalized modal intensity has been represented in a logarithmic

scale using a grey scale from black (-34 dB) to white (-8 dB). Tsub =

19.7oC

characterization on the first transition where two close modes are involved, the same

behavior is qualitatively found in all the tested devices also for transitions at higher

current for modes which are not neighboring in the spectrum.

The average emitted modal intensity as a function of current for both dominant

modes is shown in fig.II.4. It appears that, keeping fixed the temperature Tsub, in the

small transition region of pumping current between J = 87 and J = 88 mA, both

modes are (in average) lasing. In this region the ratio of the modal powers depends

on the current, and there exists a value of J for which both have the same average

intensity.

The range of current where the laser switches its active mode depends on the

value of the substrate temperature Tsub. In fig.II.5 we show the value of the mode

suppression ratio δ in the parameters space, calculated as the difference of power

between the two main modes of the optical spectrum. Following a path at constant

temperature, i.e. moving along a vertical line, at low current (around 80 mA) a

black region (A), which indicates δ < 5 dB, is found, corresponding to the colored

spontaneous emission. In fact, close to threshold many modes have similar intensities.

For higher current (83-84 mA) the threshold is reached and mode (−) starts to lase.

The gray region (corresponding to 5 dB< δ < 10dB) indicates that mode (−) increases
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Figure II.4.: LI curve resolved for the two dominant modes. Circles: mode (−),

crosses: mode (+). The temperature is 19.7oC as in fig.II.3

its power over the other modes. The transition to mode (+) happens crossing the black

region (B) around 90 mA (δ < 5 dB) towards higher currents, where mode (+) grows

up and reaches the same power (in average) as mode (−). Then for higher currents

(95 mA) mode (+) takes all the emitted power.

The central black region (B) is the transition region of parameters where we will

focus our attention. It is worth noting that for different devices we have found different

shapes for the mode suppression ratio map as shown in fig.II.5. We will see in sec.II.5

how the characteristics of the transition region shown by the HLP1400 device will be

useful in the treatment of stochastic resonance.
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

Figure II.5.: Map of the mode suppression ratio in the parameters space of the

HLP1400 device. The black regions correspond to δ < 5dB, the gray

regions to 5dB < δ < 10dB, the white regions to δ > 10dB, where δ

indicates the difference in power between the two main modes present in

the optical spectrum. Above threshold the identity of the active mode

can be stated, and it is represented by the dashed regions. The transition

region is the central black line (B) where both modes (−) and (+) are

active. The black region (A) corresponds to the spontaneous emission

filtered by the cavity below threshold. The relative optical spectra are

shown.
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II.3. Modal dynamics: mode hopping analysis

II.3.1. Phenomenology

We are now interested in time resolving the behavior of each mode in the bistability

region of parameters where both modes (+) and (−) coexist in average in their active

solution, and give a characterization of the transition as a function of the current

parameter J .

The typical time traces of the two modes in the mode hopping regime are shown in

fig.II.6 (left). Here the current is increased while the temperature is fixed at 20.8oC

in order to cross the switching region. For a given current J , each mode is active for

a time interval that depends on J : mode (−) stays active an infinite interval of time

for J close to 88 mA, i.e. in its stability region. Approaching the transition region,

this time decreases and mode (+) starts to become active for very short intervals of

time (few µs), as in fig.II.6 up. There exists a value of current for which the intervals

of activation are the same for both modes, as in fig.II.6 (middle). Increasing further

the current (see fig.II.6 bottom), mode (−) becomes active less frequently than mode

(+) and the optical power is in average shifted to the latter, as can be seen also in the

probability distribution for the intensity of each mode which is plotted in logarithmic

scale in the right panels. As can be seen from these probability distributions, the

switching time, or the amount of time spent by the system in passing from one solution

to the other, is 3 order of magnitude lower than the time spent in each solution. This

switching time is about 9 ns, and it is found that it does not depend critically on the

values of the parameters.

The degree of anti-correlation of this modal dynamics is very high. The activation

of one mode necessarily happens together with the switching-off of the other, and this

is true at high frequencies, i.e. when just one spike of few µs appears in both traces

but with different sign, as for low frequencies, i.e. for a complete switching of solution.

Keeping fixed the temperature, we extract from the two time series (I1(t), I2(t)) the

value of the cross-correlation function 〈I1(t0)I2(t0 + t1)〉 as a function of t1. This

correlation shows a minimum, close to -1, always in the first experimentally accessible

point, i.e. for t1 ≤ 1 ns, while for t1 → ∞ it tends to zero. Varying the bias current

around the transition region, the value of the cross-correlation minimum is affected.

The value of this minimum is shown in fig.II.7 as a function of the bias current (and

of the symmetry indicator η that will be defined in eq.II.4). It results that the anti-

correlation between the modal signals is always very good along the transition region,

the minimum of the cross-correlation being always close to −1. The maximum degree

of anti-correlation (−0.99) is reached for J = 91.6 mA (the center of the transition

region), and even at the borders of the bistability region the cross-correlation keeps
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

Figure II.6.: Left panel : time traces of the two modes at Tsub = 20.9oC. The trace of

mode (+) is shifted up vertically by a fixed offset (0.04 a.u.) for clarity.

Right panel : corresponding normalized probability distribution of the

modal intensity. Black line: mode (-), grey line: mode(+). From top to

bottom: J = 91.3 mA, J = 91.6 mA, J = 91.9 mA.
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Figure II.7.: Value of the cross correlation minimum (which is always found for t ≤ 1

ns) as a function of the bias current J and of the symmetry indicator

η(J) (defined in eq.II.4). The temperature is 20.9oC, as in fig.II.6.

its value around -0.9 . The increasing value of the cross-correlation minimum at the

limits of this current region, where fast spikes are present in the modal signals due

to the strong asymmetric modal emission, could be explained, at least partially, by a

lack of temporal resolution.

This antiphase dynamics implies that the sum of the two intensities keeps a constant

value (with the small amount of noise from spontaneous emission). In fact the total

intensity time trace, recorded in the transition region where mode hopping occurs,

shows an AC variation due to the underlying modal dynamics of less than 1% of its

DC component. Therefore the dynamics of the two modal intensities can be described

by only one quantity, as their sum (the total intensity) remains constant during their

evolution.

II.3.2. Statistics

It is important to understand the origin of the switching between modes, and find

out if determinism and/or noise rules such dynamics. If there exists some law driving

the evolution, it should be possible in principle to extract some informations from

statistics of the temporal traces. The natural observable is the residence time of each

mode, defined as the time interval between the switching on and the switching off
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

Figure II.8.: Logarithm of the probability distribution function for the residence times.

Mode (−): squares, mode (+): triangles. J is increased from top to

bottom: 91.3, 91.6, 91.9 mA. Tsub = 20.9oC.
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II.3. Modal dynamics: mode hopping analysis

Figure II.9.: Residence times analysis: the mean value 〈τ〉 calculated directly from

the time series is drawn as a continuous line. The value of 1/λ from the

exponential distribution is plotted as squares. The standard deviation σ

is plotted as stars. Tsub = 20.9oC

event of a given mode.

We extract from a time series the intervals of time {τi} during which each mode

is active [32]. In fig.II.8 we plot the probability distributions of the observable

τ , extracted from long time series (1M points, more than 103 events). As it ap-

pears, the experimental probability distribution P (τ) has an exponential shape,

P (τ) = A0 exp(−B0τ), with coefficient −B0 depending on the level of injection cur-

rent. For a current J = 91.6 mA the distributions of the two modes are equal, this

defines the symmetric point of the transition region.

The exponential, or van’t Hoff-Arrhenious [33][34], distribution is also called the

“memoryless” distribution, because it describes observables that show a dynamics

where no deterministic link is possible between an event and the following (as ra-

dioactive decay for example). In other words, the probability of observing an event

at time t + s after the occurrence of an event at time t, is independent from t and

depends only on s. The first event at t is “forgotten”. In these cases the dynamics

is referred as noise driven, in order to underline that a source of noise (which is a

memoryless process) is necessary to explain the behavior of the variable [35].

For a normalized exponential distribution P (τ) = λ e−λτ is easy to show that the

mean value of the variable τ is related to λ, together with the standard deviation

σ =
√
〈τ 2〉 − 〈τ〉2, by

〈τ〉 =
1

λ
= σ (II.1)

We have then calculated the experimental values of 〈τ〉, 1
λ

and σ from long time series,
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(−)

(+)

Figure II.10.: Average residence time τ− and τ+ as a function of pumping current for

mode (−) and mode (+). Inset: the symmetry indicator η = 〈τ+〉/〈τ−〉
as a function of the pumping current. Tsub = 20.8oC.

and the difference between them is very low, being more important where the statistics

are calculated over less events, as shown in fig.II.9 for mode (−). A similar result holds

for mode (+). Therefore we can conclude that the exponential distribution describes

well the distribution of the variable τ , so we will consider the jumps between modes

as triggered by noise. The most known source of noise in semiconductor lasers is

spontaneous emission, but noise is also inevitably present in the bias current.

II.3.3. Modal emission symmetry

In order to better characterize the bistable transition, we measure simultaneously the

average residence time 〈τ±〉 for both modes as a function of the bias current J , keeping

fixed the temperature, and the result is plotted in fig.II.10.
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The dependence of the average residence times as a function of J is found to be

close to exponential:

〈τ−〉 ' A− exp(−B−J) (II.2)

〈τ+〉 ' A+ exp(B+J) (II.3)

with B± > 0. Increasing the current, while the average residence time of mode (−)

decreases, it increases for mode (+). The symmetry of the emission is found at the

intersection of the two curves, at 91.65 mA for the temperature used (20.8oC), where

both modes are in average the same amount of time in their on-solution. It is worth

noting that the slope of the two curves (in logarithmic scale) is not just one the

opposite of the other, i.e B− 6= B+, but B+ > B−. This leads to an increase of

the mean quantity (〈τ−〉 + 〈τ+〉)/2 with the pumping current, which means that the

system, in addition to a change of the symmetry between modes, tends to globally

jump less often between the two modes as the current is increased.

The symmetry between the modal emissions can be quantified by means of a single

number, given by the ratio between the average residence times of the two modes. We

call this symmetry indicator η and we plot it in the inset of fig.II.10 as a function of

the current:

η =
〈τ+〉
〈τ−〉

(II.4)

As it can be seen, the logarithm of η is almost linear with the pumping current. For

low steady current levels, if mode (−) is n times more probable than mode (+), then

η = 1/n. For the current where both modes have the same probability to be found

in their on-solution, η = 1 is measured, indicating the symmetric emission. Finally

for higher currents, where mode (+) becomes n times more probable than mode (−),

one finds η = n.

Summarizing the presented results, we have seen that mode hopping is a stochastic

process driven by internal and external sources of noise. Because of the action of noise,

the system visits randomly in time the two possible stable states, which correspond to

the emission of each mode, with probability that depends on the value of the current

parameter, and that can be measured by means of the quantity η. Moreover, in the

hopping regime, one quantity (the total intensity) is conserved while the two variables

(the two modal intensities) evolve in time, as indicated by the cross-correlation. Due

to this fact, it is possible in principle to describe the evolution of the two modal

intensities by means of just one variable. Its dynamics is very similar to that displayed

by a particle in a bistable potential under the effect of noise, as it will be discussed

in the next sections after a brief overview of the theoretical background.
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

II.3.4. Noise, potential barriers and probability: overview

II.3.4.1. Langevin approach

The action of noise over the motion of particles is a problem that somehow was born

with the first observations of brownian motion in 1827 [36]. L.Boltzmann in 1896

already had the intuition that this motion depended on the fluctuations of atmospheric

pressure. In 1905 Einstein first gave a good explanation in probabilistic terms of such a

behavior, followed by Langevin in 1908 who concentrated his view in the microscopic

scale, in a way complementary to Einstein. Einstein’s description was based on a

coarse-grain time τ and no attempt was made to describe the trajectories of brownian

particles for times below τ . The trajectories were not followed continuously in time.

Langevin instead described the single particle, writing the corresponding Newton’s

law. The force ξ(t) needed to explain the motion had to be fluctuating randomly in

time and it is today called noise from the electric circuits analogy. The characteristic

of the Langevin description is the fact that the force explicitly enters in the equation

of the single particle, so one can obtain directly the trajectory integrating the equation

for a given realization of the stochastic force.

The general Langevin equation is a particular stochastic differential equation [37]

where the fluctuating term ξ(t) appears linearly, and takes the following form:

dx

dt
= f(x, t) + g(x, t)ξ(t) (II.5)

where g(x, t) is called the diffusion term, f(x, t) the drift term and ξ(t) is the noise.

If g(x, t) is a constant the noise is called additive, otherwise it is called multiplicative.

The noise term is characterized by the expression of its mean value, which is usually

zero 〈ξ(t)〉 = 0, and its temporal auto-correlation function. The latter defines the

amplitude of the fluctuating force by means of the variance D2
o and its spectrum, by

means of a characteristic time τ :

〈ξ(t)ξ(t′)〉 = D2
o hτ (t) (II.6)

With the choice hτ (t) = δ(t−t′) the noise is called white, in the sense that the spectrum

is formed by all the frequencies, and the correlation time τ is zero. A filtered spectrum

for the noise is obtained by some dependence on t of hτ (t). The Ornstein-Uhlenbeck

process is the most frequently used, and it is defined by hτ (t) = exp(−|t|/τ). This

is a realistic way to model a real source of noise, as a function generator, which has

always a low-pass filtered spectrum. The maximum frequency is proportional to 1/τ ,

so the white noise limit is recovered if τ → 0.

Focusing on our system, we said that there exists a strong analogy between the

laser in the mode hopping regime and a particle moving in a double well potential.
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II.3. Modal dynamics: mode hopping analysis

Figure II.11.: A generic asymmetric double well potential

Therefore we are interested in the equation of motion along x of a particle of mass M

in a deterministic potential Uo(x), with noise ξo(t) and friction γ. The corresponding

equation of motion is

Mẍ = −U ′
o(x) − γMẋ + ξo(t) (II.7)

In the case of overdamped motion, i.e. γ � 1, the velocity v = ẋ can be adiabati-

cally eliminated imposing v̇ = 0, then finding the stationary value. In this limit the

Langevin equation becomes a widely used rate equation with a rescaled potential and

noise U(x) = U0/(Mγ), ξ(t) = ξ0/(Mγ).

ẋ = −U ′(x) + ξ(t) (II.8)

The problem of finding the escape time over a potential barrier of a particle subjected

to a Langevin force is a subject of study since Kramer [38] in 1940, and the interest

of researchers goes from chemistry to nuclear physics [39]. Given a bistable potential

U(x), like the one in fig.II.11, the theory developed by Kramer gives the escape rate

probability r from one well to the other in terms of the ratio between amplitude of

noise Do and potential barriers ∆a, ∆b. In the overdamped limit it takes the form:

ra→c =

√
U ′′(xa)|U ′′(xb)|

2πγ
e−∆a/Do (II.9)

rc→a =

√
U ′′(xc)|U ′′(xb)|

2πγ
e−∆b/Do (II.10)

where U ′′(xi) (i = a, b, c) is the second derivative of the potential calculated at the

extrema xa, xb, xc . In the original paper [38] the term Do was replaced by the

Boltzmann coefficient 1/KBT , because the source of noise was modeled as an external

thermal bath.
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II.3.4.2. Fokker-Plank approach

The Fokker-Plank formalism is a powerful tool that allows one to find the stationary

solution for the probability distribution function P(x, t) of the system. A general

stochastic equation can be written as

ẋ = C(x) + F (x, t) (II.11)

with C(x) = −dV (x)/dx derivative of the deterministic potential and F (x, t) fluctu-

ating term with zero mean and auto-correlation given by

〈F (x, t)F (x, t′)〉 = 2D(x)δ(t− t′) (II.12)

The diffusion coefficient D(x) is constant if the stochastic term does not depend on x,

i.e. if the noise is not multiplicative. The Fokker-Plank equation gives the temporal

evolution of the probability distribution P(x, t)

∂P(x, t)

∂t
= − ∂

∂x
[A(x)P(x, t)] +

∂2

∂x2
[D(x)P(x, t)] (II.13)

The term A(x) = C(x)+ 1
2
dD(x)
dx

is the drift coefficient. The general stationary solution

of eq.II.13, which does not depend on t, is quite simple to write in terms of a new

quasi-potential U(x) and reads

P(x) = Q e−U(x) (II.14)

where Q is the normalization constant, and the quasi-potential is

U(x) = −
∫
C(x)

D(x)
dx +

1

2
ln(D(x)) (II.15)

In the case where D(x) is a constant not dependent on x, i.e. the noise is simply

additive, it is immediate to see that the quasi potential reduces to the original potential

V (x) rescaled with the noise strength D

P(x) = Q e−V (x)/D (II.16)

The result of eq.II.14 is useful from the experimental side because it is possible to

use it backwards. In fact, we can measure experimentally the stationary probability

distribution Pexp of the variables of our system, simply recording long time series with

stationary parameters and extracting the desired statistical distributions. Therefore

the experimental (quasi-)potential of the chosen variable x is found inverting eq.II.14,

i.e. displaying the function

Uexp(x) = −ln(Pexp(x)) + cst (II.17)
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φ(t)

ro(t)

1

1

ρ+

ρ
−

Figure II.12.: Sketch of a trajectory of the system in the (ρ+, ρ−) plane.

II.3.5. Experimental one-dimensional description

As discussed previously, due to the fact that the two experimental variables are

strongly anti-correlated, only one quantity is sufficient to describe the modal in-

tensities in the mode-hopping regime. Therefore we discuss here the chosen one-

dimensional description of the two experimental modal intensities. This is done defin-

ing a new variable, function of the two experimental modal intensities. Let ρ2
+ and

ρ2
− be the intensity of mode (+) and (−) respectively, normalized to the average total

intensity itot:

ρ2
± = I(±)/itot (II.18)

The amplitudes |E±| of the electric field of each mode are then proportional to ρ±.

The hopping between the two modes can be visualized by means of the phase

space (ρ+, ρ−), as it is schematically shown in fig.II.12. In this plane the position of

the system at each time t can be indicated, in cylindrical coordinates, by the vector

r(t) = ro(t)e
iφ(t) whose modulus is the instantaneous total intensity normalized to the

average value, while its angle φ with the horizontal axis carries the information of the

ratio between the two emitted modal intensities.

The probability distribution of the points visited by the system in the experimental

phase space is shown in the first row of fig.II.13 for three increasing levels of pumping

current keeping the temperature fixed, the most visited regions being marked in black.

The phase space shows the presence of two fixed points (close to the two axis at φ ' 0

and φ ' π/2) corresponding to the emission of each mode. The distance of these

stable points from the relative axis is due to spontaneous emission which prevents

one mode to have zero intensity when the other is active. The condition of almost

constant total intensity imposes the dynamics to remain close to the arc of circle with

37



II. Dynamics of longitudinal modes in bulk semiconductor lasers

unitary radius. The radial width of the distribution is then proportional to the noise

present in the total intensity. It is clear how the symmetry of the emission changes

across the transition region, passing with increasing current from η < 1 (left) where

mode (−) is the most probable, trough η = 1 (center) where both modes have the

same probability, to η > 1 (right) where mode (+) becomes predominant.

The noise acting on the system can be separated in two components by means of

the definition of ro(t) and φ(t). The radial component (that can be called “in phase”

component) of the noise affects the total intensity with a change in ro , by a variation

with the same sign in the two modal intensities. The φ−component instead (or “anti-

phase”component) changes the energy balance between the modes, with a change of

φ due to a variation with opposite sign of the two modal intensities.

In order to describe the system by means of only one variable, we decide to disregard

the “in phase” component of the noise, which is related to the noise in the total

intensity, and describe the evolution of the system by the dynamics of the variable φ(t)

alone. This variable describes the hopping between the two modes showing random

jumps in time (triggered by the φ−component of the noise) between two stable points

close to φ ' 0 (corresponding to mode (+)) and φ ' π/2 (corresponding to mode (−)).

This simplification, equivalent to neglect fluctuations in the total intensity (which are

of the order of 20% of the DC value), is justified by the fact that dynamically the

interesting switching mechanism between the two modal energies is in antiphase in

the modal signals.

Therefore we extract from the probability distributions in the phase space (first

row of fig.II.13) the distribution Pexp(φ) of the variable φ. The potential U(φ) is then

given by U(φ) = −ln(Pexp)+const (see eq.II.17), and it is plotted in the second row of

fig.II.13. In other words, projecting the dynamics on the unitary arc of circle, which

corresponds to flat total intensity, we can find the probability distribution and the

corresponding potential U of the angle φ, which is given from the measurement of ρ±
by

φ(t) = atan

(
ρ−(t)

ρ+(t)

)
(II.19)

II.3.6. Dynamical hypothesis

We can now better formalize, by means of the variable φ, the analogy between the

laser in the mode-hopping regime and the motion of a particle in a bistable potential

under the effect of noise that we discussed above. All the presented results indicate

that the same stochastic differential equation can describe the two systems. The

experimentally observed laser dynamics, in terms of the variable φ, is in agreement
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ρ+

ρ
−

ρ+

ρ
−

ρ+

ρ
−

Figure II.13.: First row: normalized probability distribution of the experimental sys-

tem in the phase space defined in the text. The colorscale goes from

black (high probability) to white (low probability) in logarithmic scale.

The bias current increases from left to right, crossing the transition re-

gion. Second row: the experimental quasi-potential of the variable φ is

indicated by the points for the corresponding situations in the first row.

The line is the the fitting of the experimental points using the expres-

sion derived in the reduced model that will be described in sec.II.6 [with

parameters: a = 85, b = −18.7, Dφ = 4.9, c = −8.1 (left); a = 108.5,

b = 0, Dφ = 4.6, c = −10.6 (center); a = 90, b = 13.5, Dφ = 2.5,

c = −7.2 (right)].
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with the one-dimensional description given by

φ̇ = −U ′(φ, J) + ξφ(t) (II.20)

Here the bistable potential U(φ, J), extracted from the data (as in the second row

of fig.II.13), is the deterministic part giving the two stable solutions, corresponding

to the stable emission of each mode. Its symmetry, in terms of potential barriers,

depends on the DC current J and can be quantified by the value of η(J). The term

ξφ(t) corresponds to the noise, assumed additive, projected along the φ-direction.

This stochastic force is responsible for the random jumps of φ between the two stable

points defined by the potential U .

In conclusion, the above assumption is valid when the bias current is constant in

time. In the following section we will show how eq.II.20 should be changed in order

to take into account the observed effect of current modulations.
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II.4. Pumping current modulation and multiplicative stochastic effects

II.4. Pumping current modulation and multiplicative

stochastic effects

We present here the experimental study of the effects of a modulation of the pumping

current parameter on the modal dynamics of the bulk laser. The interest comes from

the fact that semiconductor lasers are mostly used in applications where the pumping

current is modulated. It is important then to understand its role in those regions of

the parameters where instabilities occur. Moreover, as the laser in the mode-hopping

regime can be described in terms of a bistable potential with noise, we are interested

in demonstrating that stochastic resonance [25] can be found in this system. In this

case modulating the potential wells periodically and injecting a controllable amount

of noise into the system becomes essential, so we will study if this is possible acting

on the bias current.

We will see that, in the mode-hopping regime, the symmetry of the experimen-

tal bistable potential is, unexpectedly, affected by a symmetrical current modulation.

This is true for periodic as for noisy modulations. This change in the potential symme-

try suggests that the experimental one-dimensional characterization stated by eq.II.20

should be expanded, including the bias current fluctuations as a new multiplicative

term of the equation. Stochastic resonance can be demonstrated, either implementing

a more involved way to change the time scale of the hopping as compared to simply

adding noise into the current, either using this change of symmetry in the modal

emission.

II.4.1. Effects of noise and sinusoidal modulation

We add experimentally to the bias current of the laser the voltage noise produced by

a function generator (hp 33250A), which have zero mean, gaussian shape, bandwidth

ranging from 100 Hz to 50 MHz and whose amplitude is a controllable parameter.

In this case the DC component of the bias current is fixed independently in order

to have, in absence of external noise, symmetry between the two modes, i.e. η = 1.

However, the results are qualitatively the same for every choice of the starting value

of η (unless the system is brought outside the transition region). For increasing levels

of the noise strength, we extract from the time series the mean residence time of each

mode, and we plot them in fig.II.14 (right). The effect of such modulation is twofold:

on one hand the dynamics is accelerated, this means that the residence times are in

average decreased. This can be understood easily because the probability of passing

the potential barrier increases with increasing noise. On the other hand, this variation

is not symmetric for both modes. The average residence time of mode (+) is strongly
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Figure II.14.: Right: Average residence times for increasing levels of noise amplitude.

Squares: mode (−), stars: mode (+). Left: Values of the potential

symmetry measured by η for increasing noise amplitude. The DC level

of the current is 91 mA, the laser threshold is 83 mA.

reduced, while the variation is smaller for mode (−). The average residence time of

mode (−) is reduced but it remains always of the order of its noise-free value (around

500 µs), while for mode (+) it goes from this value to few µs. The variation of almost

two orders of magnitude of the symmetry indicator η, shown in fig.II.14 (left), clearly

indicates that the symmetry of the potential is strongly affected by the injection of

noise.

Following the analysis presented in sec.II.3.5, we show in fig.II.15 the experimental

potential U(φ) extracted from the data, relative to each level of noise strength of

fig.II.14. The potential well relative to mode (−) (close to φ = π/2) becomes deeper

increasing the noise amplitude, while the depth of the one relative to mode (+) (close

to φ = 0) decreases. In other words, noise makes mode (−) in average more stable

and more probable than mode (+). At the same time, jumps from one well to the

other become more frequent, but statistically the system spends more time close to

the solution “mode (−) ON, mode (+) OFF”, than in the other.

The same effect is present when the pumping current is modulated by a harmonic

modulation. We inject into the pumping current a sinusoidal signal, the frequency

and amplitude of the modulation being controllable parameters. The result over the

potential symmetry, given by η, is shown in fig.II.16. It is worth noting that here the

largest change in η appears for high frequencies and amplitudes of the modulation,

while for low amplitudes (< 0.25 mA) the symmetry of the potential does not vary
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II.4. Pumping current modulation and multiplicative stochastic effects

Figure II.15.: Experimental potentials for increasing noise amplitude. The noise

strength increases from zero (black curve) to 3 mA RMS (gray curve)

as in fig.II.14.

appreciably. While in the following we give an interpretation of the effect of the am-

plitude of an arbitrary current modulation, we cannot give an exhaustive explanation

to the effect of the frequency of the periodic modulation, nor we can exclude that the

observed frequency dependence of η in fig.II.16 is not due to some spurious filter effect

in the experimental setup (i.e. the amplitude of the modulation would be function of

its frequency). However, this measurement will be important in sec.II.5 where we will

describe stochastic resonance for our system.

The effect of the amplitude of a symmetrical modulation added to the pumping

current over the symmetry of the experimental potential is then similar to a reduction

of the DC level of the bias parameter1: mode (−) becomes more probable than mode

(+). Therefore it is important to check that such effect does not come from the

electronics of the setup external to the laser. In fact, it could be possible that some

rectifier-like mechanisms could cut the voltage noise shape arriving to the laser, giving

rise to an effective non-zero mean modulation of current. Another hypothesis could

be the non linearity of the current-voltage curve in diodes which could be invoked to

explain the overall decrease of the DC level of the current for high voltage level of

noise. Both these mechanisms imply that an increase of voltage applied to the laser

(like a spike of the noise giving rise to a positive current pulse) is less efficient than

1A similar result was found experimentally and theoretically in [40] observing the total intensity of

a mono-mode laser under the action of multiplicative noise in losses.
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η

Figure II.16.: The symmetry of potential measured by η as a function of the sinusoidal

modulation frequency, for different amplitudes of the signal. Amplitudes

below 0.25 mA (rms) do not affect the emission symmetry.

a decrease (like a spike towards low currents). But this would be true for the modal

as for the total intensity. Therefore, if this were true, the average value of the total

intensity would also decrease with increasing noise.

For current close to the transition region we have therefore measured the signal

of total emitted intensity for increasing values of the injected noise, and its proba-

bility distribution is shown in fig.II.17 (left). While the standard deviation of the

distribution increases with the noise amplitude, the mean value does not change ap-

preciably. This is shown in fig.II.17 (right), where it is visible that the mean value

of the distribution does not show a monotone slope towards lower intensities, but

remains constant. In order to achieve a difference in the symmetry indicator η of

two orders of magnitude as obtained in fig.II.14, the mean value of the DC current

should decrease by more than 1 mA (see fig.II.10). On the contrary, as the noise is

increased, the observed fluctuations of the mean value of the total intensity corre-

spond to variations of the DC current of the order of 0.01 mA, that therefore cannot

explain the change of modal symmetry. Also, the average voltage measured across

the diode remains constant for all the used noise intensities. In this way it possible

to exclude the previous hypothesis, and the observed behavior becomes a property

inherent to the system itself. The multiplicative nature of current fluctuations is a

possible explanation.
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Figure II.17.: Left: the normalized probability distribution of the total intensity as

a function of noise strength in logarithmic scale. The injected electric

noise has zero mean value gaussian shape, and its amplitude increases

from 0 mA (black line) to 3 mA RMS (grey line). Right: crosses indicate

the mean value of the distribution as a function of the noise amplitude,

while the standard deviation is shown as error bars.

II.4.2. Multiplicative noise

For systems where the noise enters as a multiplicative term, it can be responsible for

new states and behaviors that are not recovered in the noise-free limit [41]. Phenomena

like noise sustained spatial structure and noise induced transitions are examples of

such richness [42][37]. The most probable states of a system can, in fact, be changed

when the noise enters multiplicatively in the mathematical description. We consider

the stochastic differential equation of eq.II.5 for a general variable x(t) with time-

independent drift f(x) and multiplicative g(x) terms:

dx

dt
= f(x) + g(x)ξ(t) (II.21)

where the white noise source ξ(t) has an amplitude σ given by the correlation

〈ξ(t)ξ(t′)〉 = σ2δ(t − t′). The function f(x) can be seen as the derivative of a de-

terministic potential f(x) = −U ′(x), whose extrema are the fixed points that should

be recovered in the limit of small noise (σ → 0). Here the multiplicative term g(x)

becomes important, in fact solving the Fokker-Plank equation (eq.II.13) for the com-

plete problem, one finds that the values of the extrema x̄ of the stationary probability

distribution depend on the amplitude σ of noise. In fact they are found from the
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solution of the equation

f(x̄) − σ2

2
g(x̄)g′(x̄) = 0 (II.22)

This means that for non zero values of the multiplicative noise amplitude σ, the

solutions (in the sense of the most probable points visited by the system) diverge

from the solutions of the deterministic noise-free problem, which are simply given by

f(x̄) = −U ′(x̄) = 0. From the experimental point of view, this may give rise to a

change in the symmetry of the system, increasing with noise amplitude. We will in

fact take into account the current fluctuations in the experiment as a multiplicative

term in the one-dimensional equation.

II.4.3. Expanding the dynamical hypothesis

As we are confident that the effect of current fluctuations over the modal emission

symmetry is not due to spurious effects external to the laser, we can try to expand the

validity of the one dimensional model of eq.II.20 including current fluctuations. The

current parameter J controls the symmetry of the potential, and when J becomes

time-dependent we have seen that there is a change in the probability of the modal

emission. Therefore if the one dimensional model is correct, this effect can be modeled

by a new term proportional to the current fluctuations. When J → J0 + δJ(t) (with

〈δJ(t)〉 = 0), eq.II.20 should become

φ̇ = −U ′(φ, J0) + g(φ) δJ(t) + ξφ(t) (II.23)

where (as in eq.II.20) U(φ, J0) is the deterministic bistable potential (whose symmetry

is controlled by the DC current J0) and ξφ(t) the additive noise along φ. The new

function g(φ) has an effect over the system only when δJ(t) 6= 0. When the current

is randomly modulated (which can be modeled by an Orstein-Uhlenbeck stochastic

process for δJ), eq.II.23 becomes a standard stochastic equation with a multiplicative

noise source. As discussed before, multiplicative noise can have important effects over

the solutions of the noise-free problem.

From the experimental results presented previously, we can give a characterization

of the function g(φ) as follows. The modulation δJ(t) has not the same effect over

the two potential wells: the modulation is more effective for mode (+) than for mode

(−). Equivalently, the potential barrier relative to mode (+) is affected by a current

variation more than that of mode (−). Translating this arguments into equation II.23

is equivalent to say that the function g(φ) has a different symmetry with respect to

that of the potential U(φ). In other words, it should have a higher value in the well

close to φ = 0 (mode (+)) than in that close to φ = π/2 (mode (−)). This is valid

for an arbitrary choice of the modulation: even when the modulation is periodic,
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Modulation
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0
φ

U(φ)

π/4 π/2
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Figure II.18.: Simple scheme of the experimental hypothesis, showing that the multi-

plicative function g(φ) should have a different symmetry with respect

to the potential U(φ) and higher value in the well close to φ = 0.

the potential barrier of mode (+) is modulated (periodically) more deeply than that

of mode (−), so the internal (additive) noise makes the system escape more often

from mode (+) then from mode (−). In fig.II.18 we summarize schematically these

ideas, drawing the bistable potential and a possible shape for the function g(φ) with

a different symmetry. The higher value of g(φ) in the well relative to mode (+)

implies there an effective modulation stronger than in the other solution. We will see

that this characterization qualitatively well reflects the results of the theoretical one

dimensional description of sec.II.6.
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II.5. Stochastic Resonance

Stochastic resonance was introduced for the first time in 1981, in order to explain

ice ages dynamics [43], but the range of applicability of this new concept quickly

increased. It is now for example studied in a variety of fields such as biology and

biophysics [44][45] or electronic circuits [46], generally where noise can interact in a

non conventional way with signal transmission (for a review article see [43]). Non

linear optics, and especially laser physics, had the privilege to give the fist exper-

imental demonstration of stochastic resonance in a real system (a ring laser where

bistability occurs between two counter propagating modes [47][48]). Recently, this

phenomenon has been found and characterized in the polarization dynamics of ver-

tical cavity semiconductor lasers [32][49] and in edge-emitting semiconductor lasers

with optical feedback [50].

The counter intuitive idea of stochastic resonance is that noise can induce order in

suitable non-linear systems. In fact the interaction between a bistable system driven

by noise and a small periodic modulation2 can give rise to an enhancement of the

coherence of the output response because of the presence of noise. Fixing the frequency

and amplitude of the modulation acting over the relative depth of the potential wells,

and increasing the noise amplitude from zero, one finds that for a non-zero level of

noise the synchronization of the system response with the modulation is optimized.

In absence of noise, jumps between the potential wells are not possible because of the

choice of sub-threshold periodic modulation amplitude. For very high noise strength,

jumps between the two stable points are completely driven by the stochastic force

and the synchronization is lost again. Between these two limit behaviors, a noise

amplitude exists which can help the periodic modulation to trigger the escape from

one solution to the other. In general, this happens when the modulation period Tmod
becomes equal to 2Tk, where Tk is the intrinsic escape time of the system from one

solution (Kramers time [38][39], or average residence time), decreasing function of the

noise amplitude. Then the condition

Tmod = 2Tk (II.24)

indicates the best synchronization of the system with the modulation, from a statis-

tical point of a view because Tk is a statistical quantity.

Then experimentally is possible to find stochastic resonance in a bistable system

either acting over the noise amplitude with fixed modulation frequency, either keep-

ing the noise fixed and varying the deterministic time Tmod of the modulation. The

2It was demonstrated [51] that the condition of periodicity of the modulation is not necessary,

therefore information transmission can be done with a stochastic resonant system.
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former is the standard stochastic resonance while the latter is referred to as a “bona

fide” resonance [52][32] because the standard frequency analysis, as we will see, can-

not reveal the resonant behavior, even if the dynamical principle is for both the same.

In the following we will give evidence of both cases found in our system, focusing on

modulations around the bistable and symmetric potential. This means that experi-

mentally we fix the parameters in order to have, in absence of current modulations,

the symmetry value η = 1 for the quasi-potential.

II.5.1. Variation of the stochastic time scale

We have shown in sec.II.4.1 that adding an external modulation (noisy or sinusoidal)

in the pumping current affects the symmetry of the modal dynamics. This effect is

not taken into account in the standard stochastic resonance treatment, where noise

acting over the system is additive and it cannot change the symmetry of the potential.

Due to this fact, we have to find a way to change the stochastic time scale Tk without

injecting noise into the pumping current. On the other hand this effect of the current

modulation can be used to study stochastic resonance with multiplicative noise, as

we will describe further in sec.II.5.4.

In order to tune the stochastic time-scale, we move the system in the space of

parameters (J , Tsub) of fig.II.5 choosing a path that preserves the symmetrical modal

emission. We plot in the inset of fig.II.19 the path in the plane (J , Tsub) corresponding

to the symmetrical emission η = 1. Evidently, these points are found in the middle

of the transition region, so the shape of the curve is the same. Along this path we

measure the average resident times of the two modes, and the result is plotted in

fig.II.19 as a function of the temperature. As it appears, the value of the average

residence time (equal for both modes because of the choice η = 1) depends on the

point (J , Tsub) where the system is kept in the parameter plane. This average time

varies by many orders of magnitude moving along the path at η = 1. We refer to this

path as Γ1, and we remark the existence of two branches (Γa1 and Γb1) along which the

average residence time T varies monotonically with temperature Tsub.

The structure of the curve of fig.II.19 is related to the modal stability as a function

of the parameters, and a very refined theoretical treatment taking into account micro-

scopic effects in semiconductors would be necessary to explain the observed behavior.

The development of such a complete model is well beyond the aim of this work, where

we just take advantage of the relatively regular shape of the mean residence times in

the space of parameters for this device.

Therefore, changing the two parameters J and Tsub, allows to vary the stochastic

time-scale Tk of the hopping maintaining the symmetry of the potential constant.

Then modulating periodically the relative depth of the potential wells with a fixed
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

Figure II.19.: Average residence time T for the two modes as a function of the sub-

strate temperature along the path Γ1. Inset: the path Γ1 in the param-

eter space (Tsub,J) found in order to maintain the emission symmetry

(η = 1). Points A,B,C and D will be used in sec.II.5.2 and II.5.3.
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period Tmod, it is in principle possible to fulfill the condition Tmod = 2Tk and observe

stochastic resonance.

II.5.1.1. Checking the sub-threshold periodic modulation

Stochastic resonance is induced by a subthreshold (periodic) signal amplitude. This

means that, in absence of noise, the external force is unable to induce synchronized

jumps between the two wells. In our system we cannot eliminate the internal noise,

so this condition on the modulation amplitudes Amod added to the pumping current

has been verified using an alternative method. We have checked that, at frequencies

νmod = 1/Tmod much lower than the Kramers rates T−1
k , the amplitudes Amod used

are small enough in order not to have significant interaction between modulation and

modal behavior. This means that the hopping statistics of the modulated system

at νmod � T−1
k are very similar to the ones of the unforced system: the residence

time probability distributions remain exponentially decaying functions with the same

Kramers rates. In this way the periodic modulation alone should not be able to drive

the system from one solution to the other and could be considered small.

A second important requirement is that the modulation amplitude Amod should

not modify the symmetry of the experimental potential because of the multiplicative

nature of the bias parameter. As it was shown in fig.II.16, we observe that the

symmetry η remains unaffected, in the whole experimental frequency range, if the

amplitude Amod is lower than 0.25 mA. For the studied transition, this condition

on the modulation amplitude is more restrictive than the condition for subthreshold

excitation discussed above. Then, in practice, when modulating the system, if η

remains unchanged for the used frequencies, both conditions are verified.

II.5.2. Experimental results: Stochastic Resonance

The experimental set up used in the following is the same described in sec.II.1. We

investigate the response of the system applying a sinusoidal modulation with a sub-

threshold amplitude at a period Tmod. Then we vary the average mode-hopping du-

ration T by changing the parameters according to the path Γ1. In the following, we

will refer to the parameters used in the experiment indicating the value of Tsub ; the

corresponding value of J and T can be induced from fig.II.19. Choosing Tmod com-

patible with the hopping time scales described in fig.II.19, the temporal behavior of a

modal intensity is shown for the branch Γb1 in fig.II.20. For a different Tmod, a similar

response is found along the branch Γa1. If Tmod is chosen such that it is compatible with

the time scales of both branches, then a double resonance can be found by increasing

Tsub along Γ1.
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Figure II.20.: Left: modal intensity time series for different parameter values. The

time base is normalized to the modulation period. From top to bottom

the parameters correspond to the points marked in fig.II.19 respectively

by A (where T ' 2 ms), B (T ' 300 µs) and C (T ' 30 µs), in the

branch Γb1. The period of the modulation is 500 µs (2 kHz), while

its amplitude is 0.25 mA (rms). Right: Corresponding residence time

probability distribution functions (RTPD). The black [gray] trace is

relative to mode (−) [(+)].
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Figure II.21.: Height of the peak at the modulation frequency in the modal intensity

power spectrum as a function of the position along Γ1, expressed by

the laser substrate temperature. The corresponding pumping current

can be obtained by fig.II.19. Left: moving along Γa1, with a modulation

in the pumping current of 40 kHz and an amplitude of 0.30 mA rms.

Right: moving along the branch Γb1 with a modulation of 2 kHz and an

amplitude of 0.25 mA rms.

Analyzing the modal time series (fig.II.20 left column, from bottom to top), we

observe that, if 2T < Tmod, the system exhibits random-mode hops not synchronized

with the forcing. If 2T ≈ Tmod, the mode hopping occurs synchronously with the

modulation and a maximum of coherence in the modal signal is found. Finally, for

2T > Tmod, mode hopping does not occur anymore at every half-period of the forcing

and synchronization may be present but only for time windows lasting few modulation

periods.

A quantitative description of the resonance can be extracted from the measured

power spectrum of each mode. For each value of T the magnitude of the component

in the modal signal at the frequency of the modulation is found. The result is shown

in fig.II.21, where we plot the response along the branch Γa1 (left) and Γb1 (right). A

clear maximum can be noticed in both cases when the resonance condition Tmod = 2T

is fulfilled. This is a clear evidence of stochastic resonance, obtained by proper tuning

of the stochastic time scale of the system to the external modulation period.

Another useful analysis of the observed behavior can be performed by considering

the residence times T of a mode and perform the corresponding statistics [25]. In

fig.II.20 (right column), we plot the residence time probability distributions (RTPD)

extracted from the corresponding time series, evaluated for both modes. For 2T <

Tmod (lower row) the RTPDs are exponentially decaying functions, as a consequence

of the random hopping inside a period of the modulation. For 2T > Tmod (upper row),

the RTPDs exhibit several peaks corresponding to odd multiple of Tmod/2, indicating

that the hopping is not synchronous with the modulation but it may occur after few
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

Figure II.22.: Indicator I as a function of the position along Γ1, expressed by the laser

substrate temperature. Squares are relative to mode (−), stars to mode

(+). Modulation characteristics are as in fig.II.21.

modulation periods. Finally, for 2T ' Tmod (central row) the RTPDs present a single

peak centered at half of the external period, showing that most of the residence times

are comparable with half of the modulation period and a statistical synchronization

is present.

In order to quantify the resonance in this context, an indicator has been introduced

measuring the excess of jumps synchronized to the forcing with respect to the jumps

distribution without modulation [52][32]. This is done by integrating the probability

distributions of the resident time (in fig.II.20, right column) in a small interval around

T/Tmod = 1/2. All the events whose residence time is in this interval are considered

synchronized with the external modulation. The definition of the indicator is

I =
∫ Tmod/2−βTmod

Tmod/2−βTmod

P̃ (T )dT (II.25)

where P̃ (T ) is the residence time probability distribution of the modulated system

(with subtraction of the background distribution found in absence of the modulation),

and β = 1/4 defines the width of the integration region. In fig.II.22 we plot, for both

modes, I as a function of the position of the system along the parameter path Γb1. The

presence of a maximum of I when 2T ≈ Tmod is a further indication of the occurrence

of stochastic resonance.

II.5.3. Experimental results: Bona Fide Resonance

Keeping fixed the stochastic time scale T of the mode hopping and varying the mod-

ulation period Tmod it is possible to observe a resonant behavior in the response of

the system. In this way, the condition of synchronization between the two time scales
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is reached taking the period Tmod as a parameter. This alternative way of evidencing

stochastic resonance is referred as bona-fide resonance and was introduced in [52].

Even if stochastic and bona fide resonance evidently rely on the same dynamical

principles, while the frequency analysis of conventional stochastic resonance (as in

fig.II.21) reveals a resonant response of the system around a certain value of the noise

amplitude, for “bona fide” resonance this does not appear. This is due to the fact

that the spectral component of the output signal at the forcing frequency, suffers no

degradation at low frequencies, so a clear peak is not visible in the curve. In fig.II.23

three time traces are shown for different values of the modulating frequency, while

the amplitude is kept fixed at a sub-threshold value (0.25 mA rms). The time base is

normalized to the modulation period. Increasing the forcing frequency (from bottom

to top) the response of the system passes trough a synchronized behavior with the

external modulation (central panel). For low frequencies (lower panel) this synchro-

nization is broken by events appearing inside a period of the injected signal; anyway

the spectral component at the modulation frequency is not decreased. This happens

instead for high frequencies (upper panel) where jumps between modes cannot follow

the rapid modulation. In fig.II.24 the frequency response of the system is shown: as

discussed no resonance can be detected, and the experimental points can be fitted

with a single-pole response function of the form

F (ν) =
Ao√

1 + (ν/νo)2
(II.26)

where Ao = 0.21 and the cut frequency νo = 28 kHz for branch Γa1 (left), while

Ao = 0.34 and νo = 3.8 kHz for branch Γb1 (right). The cut off frequency corresponds

to the resonant response, as can be detected by analyzing the temporal traces.

The integral indicator I defined in eq.II.25 was introduced in [52] in order to over-

come this problem. Even if this kind of resonance is not visible in a standard frequency

analysis, it exists and it is detectable if one takes the resident time as observable. This

is the reason of the name bona fide given to this resonance. For our system the indi-

cator I as a function of the forcing frequency is given in fig.II.25. When the system is

prepared at the point E of branch Γa1 (see fig.II.19), the stochastic time scale is around

T ≈ 20µs , so the resonance is expected at the frequency (2T )−1 ≈ 25 kHz. When the

system is prepared at the point D in the branch Γb1 (where T ≈ 160µs) the resonance

is expected at (2T )−1 ≈ 3.1 kHz. The two curves of the indicator as a function of

the driving frequency, shown in fig.II.25, have maxima around these expected values.

This gives evidence of the occurrence of bona fide resonance. The difference between

the curves of the two modes is due to the experimental imprecision in the setting of

parameters in order to obtain the modal symmetry (η = 1).
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Figure II.23.: Modal intensity time series for different modulation frequencies at the

temperature Tsub = 20.5oC, corresponding to point D of fig.II.19. From

top to bottom: 20 kHz, 2 kHz, 0.1 kHz. The amplitude of the modu-

lation is 0.25 mA (rms). Since at point D one obtains T ≈ 160µs, the

resonant frequency is (2T )−1 ≈ 3.1 kHz.
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Figure II.24.: Height of the peak at the modulation frequency in the modal power

spectrum, as a function of the modulation frequency. In the left panel

the system is prepared at the point E (for which T ≈ 20µs, (2T
−1

) = 25

KHz) of branch Γa1 plotted in fig.II.19. In the right panel the system

parameters correspond to the point D (for which T ≈ 160µs, (2T )−1 =

3.1 KHz) of branch Γb1. Experimental points (squares) are fitted with

single-pole response functions (lines), see eq.II.26.

Figure II.25.: Indicator I as a function of the modulation frequencies. In the left

panel the system parameters correspond to the point E of fig.II.19, in

the right panel they correspond to point D. Dashed lines are relative

for mode (−), solid lines for mode (+).
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

Figure II.26.: Bona fide resonance. The expected resonant frequency ((2T )−1) (mea-

sured removing the modulation) plotted as a function of the frequency

of the modulation that maximizes the indicator I (calculated on the

intensity of mode (−), but a similar curve holds for mode (+)).

We have also verified that bona fide resonance can be found all along the path Γ1

in the parameter space. Preparing the system in different points on Γ1, i.e. fixing the

stochastic time scale T , we have found the relative resonant frequency of the external

modulation. In fig.II.26 it is shown that the value of the resonant frequencies are

(within the experimental error) equal to the expected resonance frequencies (2T )−1,

where the average resident time T was measured for the same parameters in absence

of the external modulation.

II.5.4. Stochastic resonance with multiplicative noise

We want to show here to show that stochastic resonance is possible adding noise on

the bias current of the laser. We have seen that conventional stochastic resonance

does not take into account the symmetry dependence of the potential over the noise

amplitude. The standard theory is developed with white or colored gaussian additive

noise, while more recent studies focused on the interplay between additive and mul-

tiplicative noise as in [53][54]. In these works two independent sources of noise are

present: a multiplicative noise creates new states for the system, and an additive one

makes the system jump between them. In [54] the effect of the multiplicative noise

term is to change the relative stability of the two stable points of the system (strongly

asymmetric in absence of multiplicative noise), and restore the symmetry of the resi-
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Figure II.27.: Temporal traces of mode (−) intensity for increasing amplitude of in-

jected noise (from top to bottom: 0 mA, 2.4 mA, 4.8 mA (rms)). The

time scale is normalized to the small external modulation period (with

frequency of 320 Hz and amplitude 0.25 mA (rms)).

dence times. Then stochastic resonance is found for an optimum non-zero level of the

additive noise, which does not affect the symmetry of the problem. They demonstrate

theoretically this mechanism in a FitzHugh-Nagumo system and experimentally in a

purpose-built electronic circuit.

In our system we can identify the source of additive noise as the spontaneous

emission of the laser. This is fixed once the system is maintained stable in a point

of the parameters space. We have seen in fact that the average residence time T of

each mode depends on the position of the system in the space of parameters (J ,Tsub).

On the other hand, according to the dynamical characterization discussed above, the

noise injected into the bias current acts, at least partially, as a multiplicative source,

and this affects the symmetry of the potential. Because of our definition (see eq.II.4

and fig.II.14), the effect of noise is to reduce the value of η (the effect on the symmetry

is similar to a reduction of the DC current). So it is possible for the multiplicative

part to restore the symmetry to η = 1 if, in its absence, the emission was asymmetric

with η > 1. Once the symmetry is restored, synchronization will be possible with
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a suitable periodic modulation whose frequency is “resonant” at that total level of

noise, given by spontaneous emission and current fluctuations. Then for higher noise

amplitudes the symmetry and the synchronization is lost again with η < 1.

Therefore we modulate the pumping current with a subthreshold periodic signal

at a frequency of 320 Hz, so Tmod/2 = 1.6 ms should be the Kramers time of the

forced system in order to find stochastic resonance. We prepare the system increasing

suitably the DC current (by a value that depends on Tmod chosen) from the symmetric

point inducing a strong asymmetry in the potential (η ≈ 10), and we increase the

current noise amplitude. The experimental temporal traces (mode (−) intensity) are

shown in fig.II.27. In the upper panel noise is absent, and it is clear that mode (+)

prevails over mode (−) and that the periodic modulation cannot be followed by the

mode hopping, because of the asymmetry and because the large difference between the

time scales (2T � Tmod). Increasing the injected noise, the symmetry of the potential

changes (η decreases), and the system passes trough a resonant region (central panel)

for intermediate values of noise. Here η ' 1 and the hopping can be triggered by

the modulation (2T ' Tmod). For higher noise amplitudes then (lower panel), the

potential is taken away from symmetry again, but from the other side with respect

to the noise free limit: η becomes lower than unity (η ≈ 1/10) and the hopping

cannot follow the external modulation because 2T � Tmod and because of the strong

asymmetry.

The results are resumed in fig.II.28. In the upper panel the values of η as a function

of the injected noise strength show the large variation of the symmetry due to the

multiplicative source. In the central panel we calculate from each time series the

integral indicator defined in eq.II.25, and in the lower panel the spectral analysis

discussed in sec.II.5.3 is performed. It is clear that a maximum of these two last

quantities, indicating stochastic resonance, is found for the noise level where the

symmetry of the potential is restored. The amplitude of the noise source of our system

acts as a symmetry parameter. When multiplicative noise has restored the symmetry,

then multiplicative and additive noises make the system to respond coherently to the

external modulation. This demonstrates that in our system stochastic resonance can

be found acting on the multiplicative source of noise.
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Figure II.28.: Upper panel: The symmetry indicator η defined in eq.II.4 as a function

of the noise amplitude. The system is suitably prepared, in absence

of noise, in a strongly asymmetric state, than noise injected into the

current changes the symmetry. Central panel: the coherence indicator

I, defined in eq.II.25, as a function of the noise amplitude. Lower panel:

height of the peak at the modulation frequency in the power spectrum

as a function of the noise amplitude.
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II.6. Model

This section should be considered an overview of the theoretical work done mainly by

S.Balle (Imedea, Spain), G.Giacomelli and S.Lepri (CNR, Italy). The tight collabo-

ration with our experimental group at INLN was for me a very interesting and fruitful

experience, as ideas from both fields improved globally the work, giving theoretical basis

to the ideas and hypothesis we could formulate from the experimental exploration.

In this section we describe the theoretical model that can qualitatively explain the

experimental results presented above. Starting from a standard set of rate equations

describing the field of the two modes and carriers in the laser, it is possible to reduce

the problem to just one dimensional Langevin equation under some hypothesis over

the modal gains, and after having eliminated the carriers and total intensity dynamics.

This is justified by the fact that the time scale we are interested in, i.e. the hopping of

the significant variable φ(t) as it was defined in the experiment in sec.II.3.5, it is long

enough (≈ µs) to neglect transient effects and relaxation oscillations (≈ ns). Under

these assumptions, we will deduce the potential that drives the deterministic part of

the dynamics, while spontaneous emission provides a Langevin force of additive noise.

The effects of a modulation of the bias current are taken into account in the reduced

model. When the current parameter becomes a fluctuating quantity, a new multi-

plicative term appears in the Langevin equation, proportional to these fluctuations.

This results in a change of the potential symmetry due to current fluctuations, in

good agreement with the experimental evidences.

II.6.1. Reference Model

The starting point of the theoretical analysis is a stochastic rate equation model for

semiconductor lasers that may operate in two longitudinal modes. The standard laser

theory developed by Lamb et al. in [55] states the reference model for such dynamics,

and we will build rate equations starting from this. This is a ab initio treatment, which

starts directly from Maxwell equations, finds the polarization of the medium in the

optical cavity by means of quantum treatment of the density matrix, and writes the

equation of movement for the slowly varying field amplitude for the general multimode

case. When two modes are considered the model becomes

Ė1 = E1(a1 − β1I1 − θ12I2) (II.27)

Ė2 = E2(a2 − β2I2 − θ21I1) (II.28)

where β1 and β2 are the self saturation coefficients, θ12 and θ21 give cross saturation

and I1,2 are the dimensionless intensities of the two modes. The gains are expressed by
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the terms a1,2 , which have a Lorentzian shape as a function of the detuning between

field and atomic resonance.

Different dynamical scenarios can be found from these rate equations according to

the sign of the coupling factor C defined as the ratio between cross and self saturation

terms:

C =
θ12 θ21
β1 β2

(II.29)

In the strong coupling regime (C > 1), which is the relevant case in our system, it is

found that the two single mode solutions ([E1 6= 0, E2 = 0] and [E1 = 0, E2 6= 0])

can coexist. The final state depends on the initial conditions and in presence of noise

mode hopping can appear. For our system we will include in this model an expression

for the carriers dynamics and for the modal gain as a function of the carriers. We will

change slightly the expression for the self and cross saturation, but these two main

ingredients will remain.

II.6.2. Rate equations

A complete physical modeling of the complex mechanisms taking part in the laser

structure is beyond the aim of this work. We want to concentrate the attention on the

dynamics of the laser in the mode-hopping regime, and give a simple characterization

in dynamical terms of the role of the parameters. The first step is writing the rate

equations for the slowly varying complex envelope of the electric field E− and E+ of

two longitudinal modes. Both modes interact with the same carrier density N which

provides the necessary gain. Writing the pumping current as a generic function of

time J(t), normalizing the time with respect to the cavity decay time (of the order of

10 ps) and considering the stochastic equations in Itô sense [35] the complete model

can be written as

Ė+ =
1

2
[(1 + iα)g+ − 1]E+ +

√
2DspN ξ+ (II.30)

Ė− =
1

2
[(1 + iα)g− − 1]E− +

√
2DspN ξ− (II.31)

Ṅ = γ[J(t) −N − g+|E+|2 − g−|E−|2] (II.32)

The decay time of carriers is about 1 ns, and it is taken into account by γ = 0.01.

The dispersive effects that are always present in semiconductors, even at the fre-

quency of the gain maximum, are included through the linewidth enhancement factor

α (or Henry’s factor [56]). From a dynamical point of view, α couples the amplitude

variations of the field with its phase variations. Any deviation of the intensity from its

stationary value will result in (damped) oscillations ∆N in the carrier number around
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its stationary point. A non-zero value of α will then cause a frequency shift propor-

tional to α∆N . In this way, amplitude variations give rise to frequency variations.

However, as it will be shown in the following, we are interested just in the dynamics

of the modal amplitudes, which are not affected by phase variations, then α becomes

irrelevant in our treatment.

As already mentioned, the polarization dynamics in VCSELs [57][26] has many

similarities with mode-hopping in longitudinal modes of bulk lasers. Rate equations

similar to eq.II.30-II.32 have been used to analyze polarization switching and hopping

in VCSELs. On one hand, switching between the two modes, in absence of bistability,

is found if the modal gains g± can change, above threshold, by increasing the current.

In this way the authors model the thermal effects in the active area, by a different

dependence of the gain on current J for the two modes. On the other hand, bistability

(and so mode-hopping) is found only if saturation terms are inserted in the expression

of the gains. In our system, as we never observe switching between the two modes

without bistability, then saturation terms are necessary and will be introduced. The

frequency profile of the modal gains is not taken into account, so the two modes are

to be considered very close to the maximum of the gain curve. In this approximation

the gain g± of each mode is assumed a linear function of N .

The symmetry of eq.II.30-II.32 with respect to the exchange of the fields E+ ↔ E−

should be altered in order to recover the experimental observations: mode (−) is active

at threshold and a transition to mode (+) appears above threshold, involving bista-

bility between them. Therefore we introduce phenomenologically a small asymmetry

between the two linear gains of the modes: g l± = N ± ε(N −Nc), where ε determines

the difference between the differential gains and Nc defines the carrier density where

these unsaturated linear gains intersect. In this way we model, by means of ε, all the

possible gain asymmetries between the two modes, simply by a small asymmetry in

their linear gains (ε > 0, ε ' 0). Saturation is then included in the expression of the

gain, as it is the case in the classical approach of sec.II.6.1, by a self (s > 0) and a

cross (c > 0) saturation term. The complete modal gains then read

g± =
N ± ε(N −Nc)

1 + s|E±|2 + c|E∓|2
(II.33)

In this model, because of the presence of saturation (necessary to have bistability),

carriers are not clamped above threshold. This means that an increase of the current

gives rise always to a (small) increase of N even above threshold, and this makes

possible the modal switching. In fact, due to the asymmetry ε, an increase of the

current J (giving an increase of N) produces a change of the sign of the difference

between the two gains g±(N) (for N > Nc). The switching occurs without taking into

account the dependence of the modal gains directly on the current, because carriers
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Figure II.29.: Linear stability analysis for the solutions of the model eq.II.30-II.32 as

a function of the current J . The stable solutions are expressed by a

“low” index when stable, otherwise they are unstable.

are not clamped above threshold. Then, in the bistability region mode hopping may

occur, because of the high modal coupling (c > s) and of the presence of spontaneous

emission noise. Therefore the small asymmetry ε together with saturation in the

modal gains, reproduce phenomenologically the observed transition from mode (−)

to mode (+) and mode hopping.

The model is then appropriate for transitions between two consecutive longitudinal

modes of the spectrum. A more detailed physical description of the gain suppression

mechanisms among modes would be necessary to explain the transitions between

modes that are not contiguous, as experimentally observed in sec.II.2 for high cur-

rents. However the general dynamical behavior displayed by the real system in all

these transitions is recovered in the model and in its reduction to a single stochastic

differential equation.

Spontaneous emission in each mode has to be inserted phenomenologically, because

the semiclassical approach cannot describe quantum fluctuations. The strength of

spontaneous emission is controlled by the term Dsp multiplying two stochastic sources

ξ± for the two modes. These are two independent complex white noise processes with

zero mean and unit variance

〈ξ±(t)〉 = 0 (II.34)

〈ξi(t)ξ∗j (t′)〉 = δijδ(t− t′) (II.35)

The deterministic version of eqs.II.30-II.32 admits four different solutions: the
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trivial solution [E± = 0], two single mode solutions [E− = 0, E+ 6= 0] [E− 6= 0,

E+ = 0], and a solution where both modes are lasing [E± 6= 0]. The trivial solution

[E± = 0] is the only stable solution for current J < min(J−, J+), where

J± =
1 ± εNc

1 ± ε
(II.36)

For definiteness, we consider Nc > 1, then J− < 1 < J+ and J− has to be considered

the laser threshold. When the bias current is increased from zero the solution [E± = 0]

looses stability for J = J− and the system switches to the first mono-mode solution

[E− 6= 0, E+ = 0]. Upon further increasing of the bias current J , the sequence of

bifurcations depends strongly on the choice of the parameters s, c and Nc. For c > s

(strong coupling) this first mono-mode solution may coexist with the other [E− = 0,

E+ 6= 0], or even with the solution [E± 6= 0] (in this case only within a small current

range). Finally, for higher current the solution [E− = 0, E+ 6= 0] prevails.

In fig.II.29 the stability analysis of the solutions is shown for the parameters ε = 0.1,

s = 0.98, c = 1.3, Nc = 1.1, γ = 0.01. Each solution is stable when the corresponding

index is lower, unstable when it is higher. Below threshold the only stable solution

is the zero solution, then it is visible that there exists a range for the current around

J = 1.2 where bistability exists between the two single mode solutions.

II.6.3. Reduction to one dimensional model

In the following we want to introduce the suitable transformations and conditions in

order to reduce the rate equations model in eqs.II.30-II.32 to an effective 1D bistable

system. We start by introducing the amplitude-phase coordinates for each mode

E± = ρ± exp (iψ±) (II.37)

From eqs.II.30-II.32, using standard transformations [35], it is possible to obtain the

new set of rate equations

ρ̇± =
1

2

[
g± − 1 +

2DspN

ρ2
±

]
ρ± +

√
2DspN ξ±ρ (II.38)

ψ̇± =
α

2
g± +

√
2DspN ξ±ψ (II.39)

Ṅ = γ
[
J(t) −N − g+ρ

2
+ − g−ρ

2
−

]
(II.40)

Since the modal phases ψ±(t) do not appear in the equations of ρ̇± and Ṅ , they do

not influence the evolution of the modal amplitudes and carrier density and we can

disregard them without loss of generality.
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ρ
−

ρ+

Figure II.30.: The mode hopping regime as it appears in the plane (ρ+, ρ−) (here nor-

malized to the mean total intensity) from the simulation of the complete

model. In the inset the corresponding time traces are shown. The pa-

rameters are ε = 0.1, s = 1.0, c = 1.3, Nc = 1.1, γ = 1.1, J = 1.197,

Dsp = 7 10−6.

It is convenient to perform the change to “cylindrical” coordinates, as we have done

for the experimental data in sec.II.3.5, introducing two new variables (r(t) , φ(t)):

ρ+ = r cosφ ρ− = r sinφ (II.41)

In these new variables, r2 is the total intensity emitted by the laser and φ determines

how this power is partitioned among the two modes. When φ = 0 the emission is

carried out by mode (+), the one active at high current which corresponds to the

one with longer wavelength in the experiment, while for φ = π/2 mode (−), the one

active at the laser threshold with the shorter wavelength, is active. Between these

two points, intermediate values of φ give different power to each mode.

The space (ρ+, ρ−), normalized to the average total intensity, is shown in fig.II.30,

for the level of J where both modes have the same probability. As for the experiment

(see fig.II.13), the dynamics of the system develops close to the unitary arc of circle,

where the two fixed points relative to the two modes are found. As discussed in

sec.II.3.5, spontaneous emission has a twofold effect. On one hand it adds noise to

the modal emission, which can be divided in “in phase” fluctuations along r (then

the visited region of the plane increases radially its shape) and in “antiphase” along

φ (and in consequence mode hopping occurs with higher rate). On the other hand it

shifts the position of the two fixed points from the axis along the unitary arc, because

the emission of each mode becomes always greater than zero.

The variables r(t), φ(t), N(t) describe then the dynamics of the system. From

eqs.II.38-II.40 using again the transformations described in [35], it is possible to find
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the rate equations driving these new variables. Two quantities

σ =
c+ s

2
δ =

c− s

2
(II.42)

appear in these rate equations: σ is related to the gain saturation induced by the

total power of the laser (which is found to be proportional to σr2), while δ reduces

the gain saturation because of the partitioning of the power among the two modes.

We assume that the asymmetry of the modal gains is small (i.e. Nc > 1, Nc ' 1,

ε � 1, δ � 1) and that the laser operates close to threshold, so that the saturation

is small (σr2 � 1). In these limit it is possible to find that, to the lower order in the

small terms, the dynamics is governed by

ṙ =
r

2

[
N − 1 −Nσr2 +

6DspN

r2

]
+
√

2DspN ξr (II.43)

φ̇ = −sin 2φ

2

[
Nδr2 cos 2φ+ ε(N −Nc)

]
+

2DspN

r2 tan 2φ
+

√
2DspN

r2
ξφ (II.44)

Ṅ = γ
(
J −N −Nr2

)
(II.45)

It is easy to recognize that φ is completely driven by the other two variables, because

it is absent from their equations of motion. Moreover its evolution time scale (φ̇ '
−φ(δ + ε) � 1) is of the second order in small quantities, while that of r and N

are of the first order (ṙ ' −r, Ṅ ' −N). Since we are mainly interested in time

scales long enough (the hopping is of the order of tens of µs) in order not to take into

account transient effects and to have completely damped relaxation oscillations of r

or N , we will consider that they both have reached the vicinity of their steady states.

Therefore, neglecting the stochastic terms in eq.II.43 and eq.II.45, r and N take the

following values

r ∼= r0 =

√
J − 1

1 + σJ
(II.46)

N ∼= N0 =
1 + σJ

1 + σ
(II.47)

When the current J is time dependent, this approximation is valid if J does not

change too fast in time. In the case of an Orstein-Uhlenbeck stochastic process (that

we will consider later), it should be required that its correlation time τ (see sec.II.3.4)

is longer than the typical relaxation time of total intensity. This condition is generally

met in the experiment because the setup allows for τ−1 of the order of tens of MHz,

while relaxation oscillations are in the GHz regime for the DC current used.

With these assumptions the dynamics can be geometrically represented as follows.

As the total intensity r2 is taken as fixed at the value r0, in the plane (ρ+, ρ−) of
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fig.II.30 and fig.II.12 the motion is now forced along a manifold (approximated as a

portion of a circle of radius r0) connecting the fixed points. Radial fluctuations of

total intensity (the “in phase” component of noise) are completely neglected. In this

way the hopping dynamics is effectively one-dimensional and, as it was done in the

experiment (see sec.II.3.5), it is described by the variations of φ(t), which determines

how the total power is partitioned between the modes. The equation of motion for φ

brings then all the relevant information. After the hypothesis expressed in eqs.II.46-

II.47, φ(t) is described by one single stochastic differential equation

φ̇ = −1

2
[a cos(2φ) + b] +

2Dφ

tan(2φ)
+
√

2Dφ ξφ (II.48)

where the parameters are defined by

a = N0δ r
2
o = δ(J − 1)/(1 + σ) (II.49)

b = ε(N0 −Nc) =
εσ

1 + σ
(J − Js) (II.50)

Dφ =
DspN0

r2
0

=
(1 + σJ)2

(1 + σ)(J − 1)
Dsp (II.51)

Js =
(1 + σ)Nc − 1

σ
(II.52)

Eq.II.48 can be written in a usual Langevin form (see eq.II.8) extracting from its

deterministic part a potential U(φ):

φ̇ = −U ′(φ) +
√

2Dsp ξφ (II.53)

where the potential is given by

U(φ) = − a

16
cos 4φ− b

4
cos 2φ−Dφ ln sin 2φ+ c (II.54)

Then one single equation describing the hopping between modes is obtained when the

current J is a fixed parameter. Here noise is given by spontaneous emission (Dφ then

Dsp) and it enters as an additive term in the equation. The dynamical hypothesis

formulated from the experimental observations in sec.II.3.6 and the one dimensional

stochastic differential equation eq.II.53 resulting from the reduction of the complete

model are in good agreement.

It is worth noting that the same equation II.48 has been derived in [28] to describe

polarization switching in VCSELs, the starting point for this theoretical derivation

being the San Miguel-Feng-Moloney model [58]. In this work the physical meaning of

the variable φ differs from here, as it represents the polarization angle of the emitted

light. Thus the two potential minima correspond to the two orthogonal linearly po-

larized directions. Also in [26] the authors have derived a one-dimensional Langevin
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equation for the polarizations in VCSELs starting from a rate equation model. Indeed

it can be shown that, with a suitable reinterpretation of the variable and parameters,

this equation can be reduced to eq.II.48. This makes a link between the two different

systems, and it will be interesting to study similarities and differences of current mod-

ulation effects over the symmetry of the polarization states in VCSEL with respect

to that of longitudinal modes of bulk lasers.

II.6.3.1. Discussion

The stationary probability distribution P(φ), solution of the Fokker-Plank equa-

tion corresponding to eq.II.53, is easily found once the potential U(φ) is known (see

sec.II.3.4.2) from

P(φ) = Po exp(−U(φ)/Dφ) (II.55)

with Po being the normalization constant. Importantly, it is found from the shape

of the potential of eq.II.54 that, in the strong coupling regime (c > s), there exists a

range of current values where the system is bistable. Within this region, the current

J controls the symmetry of the potential through the term proportional to b. At

the value J = Js , b vanishes and and the potential becomes symmetric under the

transformation φ→ (π/2− φ). This is the symmetrical situation where the residence

times of the two modes are equal. It is worth noting that the potential depends

explicitly on Dφ (i.e. on Dsp) through the logarithmic term in eq.II.54. This term

is usually very small for weak noise except at the extrema (φ = 0, π/2) where it

diverges logarithmically. Then P vanishes linearly there. Physically, this corresponds

to the fact that spontaneous emission is always present in the modal emission so the

two modes are never completely switched off, as it was discussed in sec.II.3.5 for the

experimental phase space.

In order to check the validity of the reduced model, the potential given by the prob-

ability distribution of φ, extracted from the direct simulation of the complete model

(eq.II.30-II.32), is compared to the potential found in eq.II.54. As from the experi-

mental time traces, the value of φ(t) is found from the simulated modal amplitudes by

φ = atan(|E+|/|E−|). From its distribution P(φ), the potential is found by eq.II.55

and plotted in fig.II.31 for the symmetrical value of the current J = Js = 1.195. The

form of U(φ) of eq.II.54 then accurately follows the numerical data.

The experimental quasi-potentials of the variable φ can be well fitted by the func-

tional form of the potential U(φ) of the reduced model. These potentials were shown

in fig.II.13 where we discussed the reduction to one dimension for the real system.

The fitting of the experimental points, shown as a continuous line in the second row

of fig.II.13, was performed using the function U(φ) given by eq.II.54.
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Figure II.31.: Comparison between the reduced model and the simulation of the rate

equations for J = 1.197, Dsp = 7 10−6. The grey line is the potential

of the reduced model, the black line is the quasi-potential extracted

from the simulated temporal traces of the complete model. We use the

following values for the parameters: ε = 0.1, s = 1.0, c = 1.3, Nc = 1.1,

γ = 1.1.

For weak noise it is also possible to estimate from U(φ) (eq.II.54) the two potential

barriers as ∆U± = (a±b)2

8a
. In the vicinity of the symmetrical point J ' Js these

become

∆U± ' δ(Js − 1)

8(1 + σ)
+
δ ± 2εσ

8(1 + σ)
(J − Js) (II.56)

We can neglect the fact that the noise strength Dφ depends on J ; in fact it was

verified that this gives negligible effects with respect to variations due to the current

over ∆U±. Therefore we assume that changing the current only affects the barriers

through eq.II.56. With this simplification the corresponding residence times are given

by (see eq.II.9 and II.10)

T± = Ts exp

[
δ ± 2εσ

8Dφ(1 + σ)
(J − Js)

]
(II.57)

Here Ts is the residence time at the symmetry point and, as expected, it decreases

with increasing spontaneous emission noise. Comparing this equation with the experi-

mental results, it is possible to reduce the choice for the relevant region of parameters.

In fact the behavior of the residence times with the DC level of the current depends

on the value of the difference δ − 2εσ in the exponent of T±. Increasing J around Js
may lead to an increase of both T± if 2εσ < δ, or to an increase of T+ accompanied

by a decrease of T−, if instead 2εσ > δ. It is possible to discriminate which case is

the relevant by comparing the experimental residence times of the two modes as a
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II. Dynamics of longitudinal modes in bulk semiconductor lasers

Figure II.32.: Simulation of the complete model: the average residence times are ex-

tracted from the simulated time series and plotted as a function of

the DC level of J . Triangles refer to mode (−), squares to mode (+)

and lines are exponential fits. Parameters: ε = 0.11, s = 1, c = 1.1,

Nc = 1.1, γ = 0.01 (then 2εσ > δ). See fig.II.10.

function of J , that were shown in fig.II.10. As it appears, an exponential dependence

was also found in the experiment so the parameters of the model should be limited to

the case

2εσ > δ (II.58)

in order to fit the experimental asymmetry of slope of the two curves. The average

residence times can be extracted also from the simulation of the complete model, and

their dependence with J (shown in fig.II.32) is in agreement with the exponential one

found in eq.II.57 and with the experimental result presented in fig.II.10.

II.6.4. Current fluctuations and multiplicative noise

It is possible to include current fluctuations letting J → J + δJ(t). The following

considerations hold for an arbitrary time dependence of δJ(t), under the limitations

necessary to eliminate the total intensity dynamics and obtain eq.II.46. If we are

interested in a noisy current modulation, we have to model the finite bandwidth of

the experimental electrical noise like a Ornstein-Uhlenbeck process with zero mean

〈δJ(t)〉 = 0 and correlation time τ . Its dynamics can be described by

˙δJ = −δJ
τ

+

√
2DJ

τ
ξJ (II.59)
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Figure II.33.: Solid line: potential U(φ) from the reduced model (eq.II.54). Broken

line: rescaled multiplicative term −V ′(φ)/40 of eq.II.63. Multiplicative

effects of current modulations come from the different symmetry of these

two terms. Parameters used: c = 1.3, s = 1.0, ε = 0.1, J = Js,

Dsp = 9 10−6

(where ξJ is a white noise source) which means that the correlation function is given

by

〈δJ(t)δJ(0)〉 = DJ exp(−|t|/τ) (II.60)

The effect of a time-dependent current makes the potential become fluctuating: the

a, b, and Dφ coefficients become time-dependent quantities and the potential barriers

∆U±(t) change accordingly. For weak noise, and close to the symmetry point (δJ �
Js− 1) they are computed from the approximated formula II.56 with J − Js replaced

by δJ(t) :

∆U±(t) ' δ

8(1 + σ)
(Js − 1) +

δ ± 2εσ

8(1 + σ)
δJ(t) (II.61)

The barriers’ height depends linearly on δJ to leading order. Obviously, this last

expression makes sense only when the fluctuating term is subthreshold, i.e., whenever

the system is bistable (a large enough δJ could occur making the potential single

well).

The effect of the current modulation over the symmetry of the emission becomes

more evident writing the new Langevin equation when δJ 6= 0. Putting all the terms
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together it is found, to the first order in δJ , that eq.II.53 becomes

φ̇ = −U ′(φ) − V ′(φ) δJ +
√

2Dφ ξφ (II.62)

where the new multiplicative term (−V ′(φ)δJ) appears. This is given by the expres-

sion

− V ′(φ) = − 1

2(1 + σ)
(δ cos 2φ+ εσ) sin 2φ (II.63)

and can be derived from the “multiplicative potential”

V (φ) = − δ

16(1 + ε)
cos 4φ− εσ

4(1 + σ)
cos 2φ (II.64)

From fig.II.33 it is clear that the function −V ′(φ) has a different symmetry with re-

spect to the original potential U(φ). Given the condition for the parameters expressed

in eq.II.58, this different symmetry is due to the positive value of δ, i.e. to the higher

value of the cross with respect to the self saturation term (strong coupling).

As discussed for the experiment in sec.II.4.3, it results that the effect of the mod-

ulation δJ is not the same in the vicinity of the two solutions. When the current is

randomly fluctuating in time, mode (+) (corresponding to φ ' 0) experiences noise

stronger than mode (−) (φ ' π/2). Then mode (+) becomes less stable than mode

(−) with increasing injection of noise. This is a simple representation of multiplicative

noise, i.e. noise whose amplitude depends on the state of the system, here indicated by

φ. When the current is modulated sinusoidally (and with a subthreshold amplitude),

this description holds but internal noise is the only responsible for switching. As the

modulation amplitude is not the same for the two modes, the system has more proba-

bility to escape from the (+) solution than from the (−) solution. The global effect of

a modulation is therefore in average a change in the symmetry of the potential (that

in the experiment was measured by the ratio of the residence times η) towards mode

(−) (φ ' π/2).

When noise is injected into the current, it is important to compare the time scales

present in the system. In particular, one should compare the relaxation time TR within

the wells with both the injected noise correlation time τ and the residence times T±.

An estimate of TR is given by the inverse of the curvature of the potential well and

it is of the order of 5 ns. Moreover, relaxation oscillations should contribute to TR,

and as they are in the GHz regime we can consider TR as the shortest time scale in

our system. In fact τ is of the order of 100 ns and T± is found in the range between

1 and 1000 µs. Then we have TR � τ � T±. This corresponds to the situation in

which spontaneous emission is weak, so the jumps between modes are rare. Current

noise modulates the potential barriers “slowly” (with respect to TR), so the switching

from one well to the other happens whenever the current fluctuations reduce enough
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Figure II.34.: Simulation of the rate equations with current fluctuations given by DJ .

The symmetry of the potential is affected by zero-mean noise injected

into the current. Here c = 1.3, J = 1.194, Dsp = 1.5 10−5 and the other

parameters are defined in the text. See fig.II.15.

the barrier of the potential. The minimal values of the potential barriers ∆U± are

statistical quantities, but in order to quantify the resident times we could choose them

at the values attained for δJ ∼ ∓
√
DJ (see eq.II.59). In this way, from eq.II.57, one

obtains the expression for the residence times with current modulation strength DJ

as

T± ' Ts exp

[
−K 2εσ ± δ

1 + σ

√
DJ

Dφ

]
(II.65)

where K is a numerical constant. From this expression we can find the ratio η of

the residence times, quantity that we used experimentally to measure the potential

symmetry

η ≡ T+

T−
= exp

[
−K 2δ

1 + σ

√
DJ

Dφ

]
(II.66)

As in the experiment, η is exponentially decaying if the current noise (rms) strength√
DJ is increased. This gives further confidence that the model and its reduction

describe well the experimental system.

In fig.II.34 the result of the simulation of the complete model, taking into account

random current fluctuations, is shown for three different levels of injected noise. The

probability distribution of φ is converted into the potential by eq.II.55, as done pre-
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Figure II.35.: Simulation of the rate equations with current fluctuations: residence

times T+ (squares) and T− (circles) as a function of the current noise.

The inset show the ratio η of the two times and the dashed line is an

exponential fit. Parameters are the same as in fig.II.34. See fig.II.14.

viously. As it is immediately clear, an increase of the noise strength injected in J

changes the relative symmetry of the potential towards mode (−) at φ ' π/2. This

result is in agreement with the experimental facts described in fig.II.15. In fig.II.35

the outcome of the simulation of the complete model, measuring the two residence

times, is presented. It is found that T+ and T− are affected asymmetrically by the

noise modulation of the current. Their ratio η is an exponential decaying function of

the rms current noise as it was for the experimental results shown in fig.II.14.

In conclusion, all these features derive from the difference of symmetry (in eq.II.62)

between the multiplicative term (proportional to the fluctuations δJ(t)) and the po-

tential U(φ), found in absence of external modulation. From the model it appears

that the strong coupling between the two modes is responsible for the bistability ob-

served. Within this regime, the difference of symmetry of the two terms of eq.II.62

arises when ε > 0, which is a condition necessarily fulfilled (see eq.II.58) when model

and experiment are compared. The dynamical hypothesis (sec.II.4.3) formulated from

the experimental results and the one-dimensional analysis shown here are therefore in

agreement and build confidence on the validity of the description of the model.
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II.7. Conclusions

We have analyzed the temporal behavior of the longitudinal modes of bulk semicon-

ductor lasers. Even if the emission in such devices is mono-mode for large regions of

parameters, instabilities between two strongly competitive cavity modes always ap-

pear. In relatively small regions of parameters, in fact, in general it is found a switch

of the active mode towards another resonance with longer wavelength. Fixing the

parameters in these regions, because of bistability and noise, random mode hopping

between the two modes is found.

We gave the description of the general (device independent) properties that char-

acterize such transitions, focusing the attention on the role of the bias current. Based

on the experimental observations, a dynamical hypothesis relates the laser system in

the mode hopping regime with a simple one dimensional bistable dynamical system

driven by noise. This reduction from a description of two variables to one single co-

ordinate is possible because the total intensity is in good approximation a constant

quantity even in the mode hopping regime.

Writing the rate equations for the laser, we could recover qualitatively the experi-

mental features introducing phenomenologically a small asymmetry term between the

linear differential gains of the two modes. A reduction from the rate equations to a

single stochastic differential equation was performed, using time scales considerations

and neglecting noise in the total intensity. This led to the expression of the deter-

ministic potential which gives the framework for the noise-induced dynamics. The

experimental modal distributions and their dependence on the bias parameter are in

good qualitative agreement with the theoretical analysis.

We have studied experimentally how the mode hopping dynamics was affected

by a modulation of the pumping current. Measurements suggested that the one-

dimensional Langevin equation for the system should contain a multiplicative term

proportional to the AC value of the current. The symmetry of the experimental

potential in fact changes if the system is forced with a symmetric (periodic or random)

modulation.

When current fluctuations are taken into account in the model, this new multi-

plicative term appears, depending on the difference between self and cross saturation

terms and on the asymmetry between the modal gains, giving good qualitative agree-

ment with the experimental characterization. The effect of the current modulations

over the modal symmetry is explained then in terms of the multiplicative term, as it

changes the effective strength of the modulation experienced by the two solutions.

Stochastic Resonance was also demonstrated in the experiment, both taking into

account or avoiding the multiplicative effect of the bias current. In order to change

the stochastic time scale of the hopping regime without changing the symmetry of the
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potential, we took advantage of the knowledge of the parameters space of a particular

device. On the other hand we have shown that in principle it is possible to realize

Stochastic Resonance using the multiplicative effect of the current modulation to

restore the symmetry of an initially asymmetric potential.

As a perspective, it will be interesting to analyze the similarities between mode

hopping described here in cavity modes of bulk lasers and that found for the polar-

ization states in VCSELs. It is possible in fact an unified description of the dynamics

of both systems by means of the same Langevin stochastic equation, so it would be

interesting to explore the multiplicative effect of current modulations in VCSELs.
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cavity solitons in injected VCSELs

Abstract:
Non linear interaction between a semiconductor cavity and an external coherent elec-

tromagnetic field may give rise in the transverse plane to the formation of localized,

self-sustained, bright peaks of laser emission, called cavity solitons. We have analyzed

experimentally their properties in Vertical-Cavity Surface-Emitting Lasers with exter-

nal injection. The aim of our work is the control of their positions and velocities in the

transverse plane. In fact their plasticity, together with their bistable nature and fast

time-scales associated to semiconductors, make these structures attractive for applica-

tions, as optical bits of reconfigurable devices for parallel information processing. The

control of such structures is limited experimentally by imperfections in the medium

and in the injection beam. We study the role of imperfections of the laser cavity and

we demonstrate that cavity solitons can be displaced by the action of external gradi-

ents in the injection beam. A soliton can be created by a local optical perturbation

and, once generated, it can drift along the applied gradients. We observe this behavior

and we measure velocities of the structures close to 104 m/s. Finally using a liquid

crystal light valve to spatially modulate the phase of the injection, we can create, in

the transverse plane, different stable configurations of cavity solitons, pinned by the

external parametric profile.

The work presented in this part of the thesis concerns the study of cavity solitons

(CS) found in broad area Vertical-Cavity Surface-Emitting Lasers with external in-

jection. Cavity solitons are bistable localized structures appearing as local intensity

peaks in the homogeneous background of the field emitted by a nonlinear microres-

onator, under external coherent injection. As indicated by theory of localized struc-

tures, their positions on the transverse plane are in principle not rigid, and they can

move under the effect of gradients in the parameters.

One of the main results in this field obtained by our group at INLN, was in [59]

[60] the experimental demonstration of the existence of such transverse structures

in semiconductor microcavities (2001). Once the existence of CS was proven, their
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properties were analyzed extensively in [61]. The experimental results are affected

by the homogeneity of the devices. In the past, inhomogeneities of the system were

present in form of a strong length gradient of the laser cavity (2.6 GHz/µm in [59],

then reduced of one order of magnitude in [61]) and in form of randomly distributed

defects in the surface of the resonator. The observation of stable CS under the effect

of such strong cavity length gradient was possible because of the presence of cavity

defects. These have a pinning effect on CS, preventing their drift along the cavity

gradient. Then the imperfections help the observations of CS, but, as long as the

cavity gradient exists, it is difficult to show that their presence is not necessary for

CS to exist.

We can now take advantage of the improved technology (from Ulm Photonics) in

growing homogeneous cavities with large diameter and Fresnel number (' 4000), re-

ducing the effect of the cavity length gradient to be practically negligible. In these

new devices it becomes then possible in principle to assess the distinctive features of

localized structures in terms of motion. All the practical applications that make the

use of such structures interesting in real systems, rely on the control of their state

(on or off) together with their positions in the transverse plane. In fact, the plas-

ticity of localized structures together with the fast response time of semiconductors

[62] make these systems interesting for parallel information transmission or storage.

The strength of an ideal soliton-based device is the possibility to be configured easily.

Indeed this configuration is neither rigid nor definitive, but controllable by external

parameters. Localized structures in an ideal system can be displaced and pinned over

the transverse plane, acting on gradients over the system. Our work is then an effort

in the direction of controlling the localized structures.

The first step is the experimental observation that a localized structure can be

displaced in the transverse plane, over distances greater than its width, by a change

of the external gradients acting on it. We observe that the stable position of the

soliton changes accordingly to the strength of the applied gradients. This clarifies the

role of the external gradients and of the defects in the cavity. On one hand, these

observations indicate that the gradients act as a force over the soliton, as stated by

the theory. On the other, this demonstrates that imperfections stabilize the structures

but their presence is not necessary for the existence of CS.

Using then a stationary profile of the injection, we show experimental observations

interpreted as the motion of localized structures, over distances much larger of their

size, along the applied external phase and intensity gradients. This shows that the

pinning effect of cavity roughness is small compared to the external gradients and

that it can be overcome to some extent. In such conditions, the drift of a cavity
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soliton along the applied gradients follows its switching-on. This can be induced by

the internal noise of the system or, more interestingly, by an applied local optical

perturbation. This latter result opens the way to applications with solitons as the

optical shift register. We describe the region of the parameters where the motion

along the stationary gradients can be found, and we give a description of the complex

phenomenology shown by the system.

A further improvement of the experimental set-up was achieved by the use of a

spatial modulator. This optoelectronic device allows to control the intensity and/or

the phase of the injected beam. We show the possibility to fix the positions of the

localized structures in different configurations on the transverse plane, defined by the

applied phase profile.

This chapter is organized as follows. In sec.III.1 a brief introduction to the the-

oretical descriptions of localized structures is given, together with an overview of

the mechanisms explaining their motion under external influences. In sec.III.2 we

will describe the experimental setup. We study in sec.III.3 the effects of phase and

intensity gradients over the stable positions of solitons. Here we propose also a sim-

ple method, based on localized structures, to visualize the cavity imperfections in

the device. In sec.III.4 we report experimental observations indicating the motion

of localized structures with stationary injection parameters. Finally, in sec.III.5 we

describe the experimental system, based on a liquid crystal light valve, used in order

to separately control the phase and intensity of the injection.
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III.1. Introduction

Spatial structures arising from dynamical instabilities are present everywhere in na-

ture; they were firstly studied in biology [63], hydrodynamics [64] and chemistry and

finally in optics [65][66]. In this field, the interest also comes from possible applications

based on the transverse dimensions of suitable optical systems.

In mathematics and physics, a soliton indicates a self-sustained solitary wave cre-

ated by a balance between nonlinear and dispersive effects in the medium. In optics,

with the name of spatial solitons are indicated propagating beams of light in which

nonlinearity counterbalances diffraction, leading to a robust structure which propa-

gates without being altered [67]. The non linear media that can host such beams needs

to be, in this conservative scheme, self-focusing: the index of refraction is proportional

to the intensity of the light (Kerr media).

It became clear that it is possible to find similar soliton-like solutions in systems

where the propagation is confined in an optical cavity. In this scheme, the losses

from the cavity mirrors needs to be balanced by some external mechanisms, as optical

injection. Such system is then intrinsically dissipative because losses and pumping

mechanisms are necessarily present. Cavity solitons should be distinguished from

spatial solitons. In fact, stable cavity solitons can exist, somehow unexpectedly, in

media with different properties from, even opposite to, those required for spatial

solitons, as self-focusing. The relationship between cavity solitons and non-linear

patterns makes this difference. In fact the origin of cavity solitons cannot be simply

described as the result of the balance of diffraction and focusing in the cavity. Rather,

they should be considered as single independent cells of a larger non-linear pattern.

Cavity solitons in semiconductor cavities were extensively studied theoretically

since the works in ’80 [68][69]. The main ingredient that the theory suggested is the

use of a system that presents a large aspect ratio, or Fresnel number, together with

energy injection from a plane wave (which is often called holding beam, HB). For

semiconductor lasers, as in our work, the input energy into the system comes from

the optical injection of the holding beam together with the electrical pumping of the

diode. The system is driven in a region of parameters where the output is uniform.

This homogeneous solution of the system coexists, for the same values of parameters,

with a pattern solution (hexagons, rolls etc.). Injecting then a localized optical pulse

over the transverse plane (the so called writing beam) one can write a cavity soliton,

which consists of a localized peak of high intensity over the homogeneous background.

Due to its bistable nature, the soliton persists stable even after the pulse as long as

the injected holding beam is kept on [70].

The idea at the base of possible applications, is to use the transverse plane of the

system (perpendicular to the propagation) as a blackboard where spots of light can
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be written and erased. In fact once the soliton is created, it can be erased by a similar

pulse out of phase with respect to the first one [62]. Many solitons can be created

across the transverse plane, and importantly they all are independent. In this way a

configurable matrix of independent bistable bits can be created. This control is not

possible with other types of transverse structures in optical systems. Transverse modes

have always a correlation length along the transverse dimensions of the order of the

size of the system; different distant points of the space are then coupled, and a local

control of the output is not possible. On the contrary the transverse correlation length

when solitons are present in the system is of the order of the soliton size (about 10 µm

in our VCSELs). This property allows for creating arrays of independent structures.

In conclusion, it is worth noting that semiconductors cavities are the systems where

the experimental finding of the presence of cavity solitons is the more appropriate for

applications because of their fast response times (the switching-on of a soliton has

been measured as less than 1 ns [62]). Anyway, similar structures have been observed

in different optical systems, as for example in photorefractive resonators [71] and in

lasers with saturable absorber [72]. The experiments on sodium cell and liquid crys-

tal light valve give impressive experimental evidences of many properties of localized

structures (for two reviews on these subjects see [67] [73]). The position of local-

ized structures has been controlled experimentally by injection gradients [74] and the

demonstration of the possibility of a shift register was also shown [75].

III.1.1. Theoretical descriptions

The theoretical works on cavity solitons can be divided roughly in two groups that have

different approaches [77], differing on the identification of the mechanism at the origin

of such localized structures. One approach (referred as “diffractive autosolitons”) was

developed by Rosanov and collaborators [69][78] from the study of fronts connecting

different solutions. Switching wave connecting different stable states are found in

many systems, as those described by reaction-diffusion equations. When diffusion in

the medium is predominant, the most stable state wipes out the less stable [79]. When

diffusion of carriers and diffraction of the field are present, small ripples are formed

around the switching wave, and this constitutes a possible trapping mechanism for

other fronts. In two dimensions then a front can close on itself and form a stable

localized region where one solution is surrounded by the other. In this interpretation

a soliton is then a self trapped switching wave [67].

For the other approach, started by Mandel in [80], the necessary mechanism is the

so called modulational instability [81][76]. Under injection of an external field, for a

certain region of parameters, the stationary homogeneous solution looses its stability
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Figure III.1.: Output (|E |) versus input (EI) field for the model in [76] for the active

(with population inversion above transparency but below threshold) res-

onant case. The line corresponds to the homogeneous solution ES which

loses stability from a modulational instability. Results from numerical

simulation (points) show the region where patterns and cavity solitons

(SS) are found.

in favor of a periodically modulated one. Mathematically one homogeneous solution

Es(x, y) is unstable against a spatially modulated perturbation if its perturbated form

E = Es + eλt+i(kxx+kyy) δES (III.1)

can grow exponentially in time (i.e. exists λ > 0) for a non zero value of k = (kx, ky).

Then the system will develop a spatial frequency with transverse wave vector k, and

this leads to the onset of a pattern. A second necessary condition is, for an interval

of the injection intensity, the coexistence between the pattern and the homogeneous

stationary solutions. Cavity solitons are then a special solution which connects the

pattern solution with the homogeneous stationary state. Therefore they are an exam-

ple of localized structures previously discovered in other fields [82][83]. In this scheme

of modulational instability, the region of parameters where solitons are found is there-

fore very close to a branch of stable spatial patterns, as in fig.III.1; this feature is found

also in our experiments (even if the observation of regular patterns as hexagons still

misses in semiconductor lasers, probably because of cavity inhomogeneities) and con-

tributes in building confidence in this mechanism for the onset of spatial instabilities

in our experimental system.

This scenario was analyzed by Coullet et al. in [84] where the authors, using general

properties of differential equations, give a general dynamical characterization for one
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dimensional systems (however similar results are obtained also in 2D simulations [85]).

Considering a stable infinite pattern coexisting with a homogeneous stable state, they

demonstrate that there exists a region of parameters where a front connecting the

two solutions is stable. In that region of parameters one solution cannot prevail on

the other, as in purely diffusive systems, because of a “nucleation energy” needed in

order to create or annihilate every cell of the pattern. In that region, they show that

an infinite set of localized N-peaked states can be found with the N=1 states (single

peak solitons) the most probable to observe.

III.1.2. Cavity solitons motion

Many theoretical analysis show that cavity solitons can move along the transverse

plane without energy cost. This is related to the translational symmetry of the equa-

tions. The results indicate that the soliton behaves as an overdamped Aristotelian

particle [67][86], whose velocity (instead of acceleration) is proportional to the external

force.

One of the first works [87] showing the effects of a phase gradient of the holding

beam, considered a class A two-level system in the mean-field approximation [88], with

saturable absorber nonlinearity. When the input holding beam EI = EI0 exp(i
−→
K · −→x )

is considered tilted with respect to the optical axis (
−→
K 6= 0), creating a phase gradi-

ent, the equation indicates that any static solution existing for the on-axis injection

(
−→
K = 0) should survive in the misaligned problem, but drifting with a velocity pro-

portional to
−→
K . Then, when the phase profile of the injected beam presents extrema,

cavity solitons (here called optical bullet holes because of the saturable nature of the

absorber) are attracted towards them, where their velocity becomes zero. Therefore

it is possible to configure an array of localized structures.

The general behavior of stable solutions like cavity solitons under the effects of

external or internal variations of parameters can be found, following ref. [89], writing

the equations driving the system in the concise and general form

∂E

∂t
= f(E) + EI (III.2)

Here E represents all the possible variables, EI the driving field(s) and f is the

non linear function for the system. All these quantities are in general vectorial. A

stationary solution for the problem is ES (so ∂tES = 0), and a small perturbation is

considered. Due to the perturbation the solution suffers a slight deviation from the

stationary value, then E = ES+ε. It is important to understand how the perturbation

ε evolves in time, so its evolution equation is written from eq.III.2. Regardless the
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nature of the perturbation (internal or external) the evolution of ε is driven by

∂ε

∂t
= JS · ε+ P (III.3)

where JS =
(
∂f
∂E

)
ES

is the Jacobian of f(E) at the stationary solution and P is the

general perturbation. Then the deviation ε is decomposed on the basis formed by

the eigenvectors |uj〉 of the Jacobian as ε = Σ aj|uj〉, where JS|uj〉 = λj|uj〉, and

the similar condition 〈vj|J tS = 〈vj|ζj holds for the transposed problem. Using this

decomposition and projecting eq.III.3 on the transposed basis 〈vj|, one arrives to the

equation describing the evolution of the components aj of the perturbation ε

daj
dt

= λjaj +
1

〈vj|uj〉
〈vj|P〉 (III.4)

where the vector basis can be further normalized. It is reasonable to consider that

the deviation ε from the stationary solution grows from zero when the perturbation is

turned on, i.e. aj(t = 0) = 0, ∀j. Then from eq.III.4 one obtains a different temporal

behavior of aj(t) if λj is equal or not to zero. In fact

aj(t) =
1

λj

〈vj|P〉
〈vj|uj〉

(eλj t − 1) if λj 6= 0 (III.5)

a0(t) =
〈v0|P〉
〈v0|u0〉

t if λ = 0 (III.6)

Because ES is a stable solution, all the eigenvectors |uj〉 have eigenvalues with negative

real part, except |u0〉. This means that after a transient (t→ ∞), all aj will be damped

and a0 will dominate. This shows how the effect of a perturbation on a stationary

stable solution is determined by the projection 〈v0|P〉 of the perturbation P over the

neutral mode 〈v0| of the transposed Jacobian J tS. All the internal degrees of freedom

of a cavity soliton are then suppressed, leaving only its translational freedom, giving

it its particle-like behavior.

In fact, the velocity of the stationary solution ES is proportional to da0/dt found

in eq.III.6. For times long enough (few medium lifetimes) we have seen that the

perturbation ε can be written only in terms of the neutral mode, ε = a0|u0〉, and the

perturbed solution is then E = ES + a0|u0〉. When ES is a cavity soliton, one finds

[89] that the neutral mode |u0(x)〉 is proportional to the spatial gradient of the soliton

itself, i.e. |u0〉 = α dES

dx
. So the perturbed solution can be written as E = ES+a0α

dES

dx
.

If now we consider a soliton slightly displaced from its initial position xo, we can write

at the first order the perturbed solution as E = ES(xo + ξ) = ES(xo) + ξ dEs(xo)
dx

, then

a0α = ξ. The velocity of the soliton is given then by the evolution of the displacement
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ξ, which can be written in terms of a0:

v =
dξ

dt
= α

da0

dt
= α

〈v0|P〉
〈v0|u0〉

(III.7)

where eq.III.6 has been used. Therefore at first order the velocity is directly propor-

tional to the projection of the perturbation on the neutral mode.

In the case of small phase and amplitude gradients, the perturbation can be written

as P = Eh
I ikx and P = Eh

I kx respectively. This comes from the approximation of

small variations [EI(x) = Eh
I e

(i)kx ' Eh
I (1+(i)kx)] from the background homogeneous

input field Eh
I . The result is a linear dependence of the velocity on the phase or

intensity gradient k.

Theoretical studies on the effects of external or internal gradients over the motion

of solitons exist also taking into account the frequency and the size of the spatial

modulations [90] [86] or thermal effects in semiconductor microcavities [91][92].
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Master
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Figure III.2.: Scheme of the experimental setup

III.2. Experimental Setup

The experimental setup is based on a master/slave configuration, where the injected

beam (holding beam, HB) from the master laser is manipulated in order to have con-

trolled modulations of its intensity and phase transverse profile. A second weaker

injected beam (writing beam, WB) can be used as a local optical perturbation. We

divide the setup for clarity in different parts, shown in fig.III.2: master laser, holding

and writing beam preparation systems, injection system and spatio-temporal detec-

tion.

C1

G

Curr

Temp

ML
HB1

WB1

BS

Figure III.3.: Master laser source.

1. Master laser. This is the coherent source of laser light needed for injection.

It consists of a Pirelli edge emitting semiconductor laser (ML) with frequency-

filtered feedback from an external cavity (in a modified Littrow configuration)

as in fig.III.3. The laser current is controlled with a stable (10 µA) current

generator, and the substrate temperature is kept fixed (up to 0.01oC) by a Peltier

module. After the collimator C1, the beam is divided in two by the beam-splitter

BS (50% reflectivity) and one part is sent back into the laser as the first order of

88



III.2. Experimental Setup

the diffraction grating G (1800 lines/mm). The laser displays then monomode

stable emission with a bandwidth lower than 290 KHz (estimated by heterodyne

measurement), and almost continuously tunable frequency (using the interplay

of the external and internal comb of modes) in the range 960-980 nm. Its main

exit beam (HB1) has a power of 70 mW at the typical current of 150 mA, and it

will be used as the principal injection source for the VCSEL. The second beam

(writing beam, WB1) has a power of 20 mW, and will be used highly focused

on the VCSEL acting as a local perturbation.

CL

HB1

FP

PBS

L4 L3

HWL2OIL1

OI

HB2

M

M

SOAHW1

AP

Figure III.4.: Holding beam preparation.

2. Holding beam preparation. Fig.III.4. The beam HB1 needs to be prepared before

being injected into the VCSEL. At the master exit two anamorphic prisms (AP)

adjust the elliptical profile of the collimated beam, and an optical isolator OI

inserted in a 1:1 telescope (L1, L2) makes the injection unidirectional and pre-

vents for spurious feedback towards the master laser. The use of the half-wave

plate HW and the polarizer beam splitter PBS allows for changing the level of

injected power, and the spectral purity of the master laser is monitored in a

Fabry-Perot interferometer. When higher powers are needed, the tapered semi-

conductor optical amplifier SOA (between a 1:1 telescope formed by collimators

L3 and L4) is used. A cylindrical lens CL is then necessary to adjust the strong

asymmetry of the exiting beam and a second optical isolator OI prevents de-

structive feedback to the amplifier. The last element is a half-wave plate (HW1)

used to turn and fix the polarization vertical with respect to the plane of the

table. This will be important using the Liquid Crystal Light Valve described in

sec.III.5.

3. Writing beam preparation. Fig.III.5. The writing beam follows an independent
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Figure III.5.: Writing beam preparation.

path. It is spatially filtered by the Fourier filter formed by the lens L5, L6 (a 1:1

telescope) and the 50 µm diameter pin hole PH50. When a fast pulsing writing

beam is required, the electro-optic modulator EOM is inserted. The half-wave

plate HW2 and the quarter-wave plate QW are used in order to match the input

polarization of the EOM. The resulting beam consists of a train of pulses at a

frequency in the KHz range, with width of 100 ns each and with a rise and fall

time less than 1 ns. A piezo electric element (P) is mounted on the back of the

last mirror in order to vary the optical path of the WB with respect to the HB

in a sub-wavelength scale, so to change their interference condition.

4. Injection. Fig.III.6. The prepared holding beam HB2 (whose polarization is

vertical) is spatially filtered by the Fourier filter formed by the collimator L7

(C280TM-B, 18 mm focal length), the 30 µm pin hole PH30 and the lens L8,

which has a focal length of 10 cm and is mounted on a translational stage

to control its distance from the aperture PH30. This distance is critical as

it changes the phase profile of the injected beam arriving to the VCSEL. We

will always work with a quasi-collimated holding beam, trying to have on the

VCSEL a phase profile as flat as possible. This is done acting on the position of

lens L8 along the axis, and minimizing the width of the far field of the reflected

light on the VCSEL (see Detection). In fact minimizing the size of the Fourier

transformed of the injected field, should produce the flattest phase profile as the

number of transverse vectors in the injected field is minimized. The HB passes

then trough a Mach-Zender interferometer formed by three beam splitters and

one mirror mounted on a piezoelectric element (BS3: reflectivity 50%, BS4:

90%, BS1: 50%). The contrast of the interference fringes on the VCSEL plane

is close to unity, and their orientation is easily changed by alignment. The total

injected power, in front of the last collimator, is of the order of 10-15 mW.

In spite of the relative simplicity of this scheme, amplitude and phase of the

injected beam are in this way always coupled. In sec.III.5.1 we will describe

the modifications of this set up, made in order to build a system that could

control the phase and amplitude separately. The WB is superimposed to the
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Figure III.6.: Injection and spatio-temporal detection (inset) scheme.

HB trough the beam splitters BS4 and BS1, and its power in front of the VCSEL

is few tens of µW. Finally by means of the telescope formed by lens L13 (10

cm focal length) and collimator C (C350TM-B, focal length 4.5 mm), the size

of the HB is reduced to the size of the VCSEL (' 200µm). At the same time

the WB is focused on the VCSEL passing through L14, L13 and C, having a

waist of the order of 10 µm. The bias current of the VCSEL is controlled by

a stable current generator (10 µA), and the substrate temperature is stabilized

by a Peltier element (up to 0.01 oC).

5. Detection. Fig.III.6 (inset). The light injected into the VCSEL and reflected

by its output mirror, together with the emission of the VCSEL itself, are sent

to the detection system through the last beam splitter BS2 (reflectivity 90%).

The collimator C determines a near field image of the VCSEL at the plane

NF1 (indicated by a dashed line). There we put an iris (whose diameter is

controllable) that we can move along the (x, y) plane, being z the propagation

direction. We can therefore filter in the near field the zone we are interested
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in. Two other near field planes exist (NF2 and NF3) in this configuration: NF3

(formed by the lens L14) is a large image of the VCSEL (the total magnification

is around 1000) on the plane of a linear array of 6 fast avalanche photo-diode

detectors (APDs), which give the temporal dynamics (with bandwidth of 350

MHz) of small regions of the transverse plane. The separation between two

points in the VCSEL plane monitored by two neighboring detectors is of 8.9 µm.

The area monitored by each detector has a diameter of less than 7.2 µm, which is

of the order of the size of the CS found in this system. In order to maximize the

length of the monitored spatial region, we use six detectors together with two

synchronized oscilloscopes (Lecroy 7200A: 500 MHz analog bandwidth, 1Gs/s

and HP Infinium 54831b: 600 MHz analog bandwidth, 2Gs/s) for simultaneous

monitoring of six channels. The other near field image of the VCSEL output

(NF2) is monitored by a CCD camera (CCD2) which is used together with the

iris placed on the near field image NF1 to locate the points monitored by the

detectors. Finally, CCD2 provides the far field profile of the VCSEL output.

III.2.1. The injected VCSEL

Figure III.7.: VCSEL near field under injection at fixed wavelength and for increasing

current J . From left to right, top to bottom: J = 310, 333, 351, 372,

387, 450 mA.

The injected laser is a broad area (diameter 200 µm) bottom emitting Vertical

Cavity Surface Emitting Laser, provided by Ulm Photonics. We have tested several

devices with the same characteristics, and we have found very similar results. In the
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explored range of temperature (16-23oC), when the current is increased, due to the

large surface, this laser does not reach a clear threshold before the occurrence of the

thermal roll-off. Therefore, for the range of current explored, we consider that the

VCSEL is driven below threshold and above transparency.

In these devices the cavity length gradient (as in [60]) can be neglected. However,

in every tested device we have found some cavity defects that appears in form of lines

or extended regions. These defects are visible when the VCSEL is injected close to

resonance, as in fig.III.7 where the bias current of the VCSEL is increased. For a

current level where interaction between the medium and the injection appears (310-

330 mA), the presence of a line at the bottom of the image is evident. For higher

currents (350-370 mA) two extended defects are also visible at the top of the image,

as almost circular dark regions. The origin of the latter inhomogeneities is unclear,

while the line defects may originate from the atomic strain of the semiconductor

structure due to the difference in the lattice constant along the device. According to

the manufacturers, these lines can propagate in the wafer for distances of the order of

1 mm. We have found that after about 300 hours of current injection into the VCSEL

of fig.III.7, a new line defect appeared in the right side of the device. These defects are

the main limiting factor for the observation of motion of localized structures, because

they create strong local gradients, limiting the available transverse space.
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III. Experimental study on control of cavity solitons in injected VCSELs

Figure III.8.: Near Field of the VCSEL under strongly modulated injection. Even if

a black screen, imaged onto the VCSEL, prevents injection to the right

side of the laser, patterns tend to extend to the whole surface. J = 512

mA.

III.3. Phase and intensity gradients

In this section we analyze experimentally the effects of phase and intensity gradients

of the holding beam on the stable positions of cavity solitons, using as injection a set

of interference fringes. For different configurations of the two beams from the arms of

the interferometer (see fig.III.6), we observe different stable positions of the localized

structures.

The following results of this section rely on the fact that the injection beam is

in form of interference fringes (see for example fig.III.10). We note here that the

spatial coupling of the system is assured even under a strongly modulated injection,

by diffraction inside the VCSEL cavity. In fact, as it is shown as an example in fig.III.8,

for detuning where patterns develop they extend to the whole surface of the VCSEL

by diffraction inside the cavity, even if the injection does not cover the whole surface.

Then the spatial dimensions of the system are still coupled, by diffraction, even with

a strongly inhomogeneous injection. We observe that inside an intensity fringe whose

width is slightly larger than its diameter, a soliton maintains unchanged the properties

which are observable in the case of two dimensional homogeneous injection, as its

shape and bistability. Moreover, it can move in both directions, as we will show in

the next sections.

III.3.1. Phase and intensity gradients induced by interference

The aim of this section is to give the general expressions of the intensity and phase

profile of the injected field when the holding beam passes through an interferometer

and consequently is split in two coherent beams, whose amplitudes and directions are
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Figure III.9.: Intensity ρ2(x) (left) and phase φ(x) (right) profile for k1 = 1 and k2 =

0 from eq.III.11. The amplitude A2 = 1 is kept constant, while A1

increases (A1 = 0.1, 0.3, 0.5, 0.8, 1) producing higher modulations in

phase and amplitude.

controllable experimentally. In the simple hypothesis that the two beams are two

plane wave, the angle they form with the optical axis is controlled by their transverse

wavevectors k1 and k2, while their amplitude are A1 and A2. The total field on the

transverse plane of the VCSEL is then the sum of the two fields E = A1 e
ik1x+A2 e

ik2x.

It is possible to write the total field E in terms of its amplitude and phase as

E = ρ e iφ, defining the quantities

K =
k1 + k2

2
(III.8)

δk =
k1 − k2

2
(III.9)

In this way the amplitude ρ and phase φ of the total field along the transverse direction

x are given by

ρ(x) =
√

4A1A2 cos2 (δk x) + (A1 − A2)
2 (III.10)

φ(x) = atan
[
A1 − A2

A1 + A2

tan (δk x)
]

+Kx (III.11)

The equation for the amplitude shows that the interference term is obviously con-

trolled by the product of the amplitudes A1A2, while the spatial frequency by the

difference δk of the transverse vectors. The interference fringes have then a constant

component given by the difference (A1 −A2)
2, i.e. the contrast is maximum when the

two beams have equal intensity, otherwise it decreases.

The simplest case is when both beams are normal to the VCSEL, so the transverse

wavevectors are zero, k1 = k2 = 0. In this case the total amplitude is simply the sum

of the two amplitudes along x (ρ = A1 + A2) and the phase profile is flat (φ = 0).
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III. Experimental study on control of cavity solitons in injected VCSELs

If now we consider the beam A1 tilted in respect to the beam A2 (k1 = 1, k2 = 0),

then the phase and amplitude profiles become modulated. In fig.III.9 we show the

ρ and φ profiles for different amplitudes A1 in the case k1 = 1, k2 = 0 (that will be

useful for the experimental observations of sec.III.3). The contrast of the intensity

modulation ρ2 increases with A1 approaching to A2, while the phase modulation

grows from zero to φ(x) = Kx (mod π/2) when A1 = A2. So when the two beams

have the same intensity the phase gradient is simply given by the non-zero transverse

wavevector of the tilted beam, that can be measured directly in the near field finding

the transverse frequency of the fringes. Increasing the amplitude of A1 from zero to

A2, is then equivalent to increase the phase and intensity gradients along x.

III.3.2. General behavior

As the holding beam passes through the interferometer, and its phase profile is flat

on the VCSEL plane, in the far field one can observe two small bright spots, each

corresponding to the injection of one arm of the interferometer. We indicate these

two beams, and their corresponding points in the far field, with the labels A and B

(see fig.III.10). We fix the alignment of beam A (in absence of beam B) to be on-axis.

This allows to observe stable solitons in the near field of the VCSEL. Then we inject

beam B and we create vertical intensity fringes in the near field. This corresponds

to a small (horizontal) misalignment in the far field of the two points A and B, as in

fig.III.10 (bottom).

As it can be seen in the images, the positions of the localized structures along

the fringes in the near field changes with the position of the point B in the far field.

Aligning point B at left of the zero defined by the point A, induces positions in the

near field tilted to the left with respect to the center of the fringes. On the other side,

if point B is at right of the zero of the far field, then the structures in the near field

are “pushed” towards the right of each fringe.

Points A and B are the Fourier transformed of the two beams coming from the

interferometer, and a misalignment of them in the far field means a different angle of

incidence on the VCSEL plane. As discussed in sec.III.3.1, in a plane wave approxi-

mation this means that the beam B is responsible for a phase gradient on the plane of

the VCSEL, along the horizontal direction. In the case of fig.III.10, the relative phase

of the two beams has a variation of π every ' 30µm along the direction perpendicular

to the fringes (to give easily an estimation we consider equal intensities). Then we

can estimate the phase gradient of the order of 0.1 rad/µm and an angle of about

0.02 rad between beams A and B. On the other hand the interference creates intensity

fringes. The maximum intensity gradient is quite strong because the two arms of the

interferometer have similar intensities (the modulation has an amplitude of 90% of
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Figure III.10.: Near field (top) and respective far field (bottom) images of the VCSEL

(250 µm diameter) using as injection the two coherent beams A and B

coming from the interferometer. The cross in the far field indicates the

direction of beam A, which is chosen normal to the VCSEL surface,

i.e. giving the origin of the transverse plane. The sign of the angle of

incidence of B changes from right to left.

the maximum value, estimated of the order of 104 mW/cm2).

The observations can be interpreted as follows. The structures are at rest and

the only parameter changed is the sign of the phase gradient, so what we observe

are the stable positions of the structures due to the compensation between phase and

intensity gradients. The overall result is a shift of the equilibrium point of the localized

structures inside the bright fringes, along the direction and orientation defined by

the transverse vector
−→
AB in the far field plane. We can roughly estimate that the

magnitude of the intensity gradient that each soliton experiences in its position is

of the order of 10% of the maximum amplitude for every micron (103 mW/(cm2

µm)). Neglecting for the moment the effect of cavity defects, as the solitons are

at rest, the effect induced by the intensity gradient should equal that of the phase

gradient. This gives the order of magnitude for both modulations when their effects

(i.e the velocities they produce) over the solitons are equal: ∇φ ' 0.1 rad/µm and

∇I ' 103 mW/(cm2 µm).

The observed behavior changes injecting the beams A and B with the same but

opposite angle with respect to the normal, as in fig.III.11 (left). In this configuration

the far field origin is in the middle between the two points A and B. The phase profile

of the total injection is then flat and the phase gradient is zero (see sec.III.3.1). Under

these conditions we observe that the positions occupied by the localized structures
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B

VCSEL

A

Figure III.11.: Left: scheme of the injection for which the phase gradient is zero.

Both beams have the same but opposite angle with respect to the axis.

Right: near field of the VCSEL. The structures occupy the center of

the fringes, where the intensity gradient is also zero.

correspond globally to the center of each intensity fringe where the intensity gradient

is also zero, as in fig.III.11 (right).

These observations, made in stationary conditions, are in agreement with the the-

oretical prediction that cavity solitons should experience a force (and a velocity)

proportional to, and directed as, the phase and intensity gradients in the injection

field. Here, controlling these gradients, we could put in evidence their effects on the

equilibrium positions. In fact we have seen that, when a positive phase gradient is

present, the stable positions of the structures are found where a negative intensity

gradient is able to compensate it (fig.III.10). When the applied phase gradient is

zero, the equilibrium is at the positions where the intensity gradient is also vanish-

ing (fig.III.11). This describes the general behavior observed, but the details of the

displacement of each soliton may change for different transverse region of the laser,

mostly due to imperfections pinning the structures, as we will see in the next section.

III.3.3. Effect of imperfections

In the previous section we have neglected the effect of imperfections over the solitons.

These are intrinsic to the semiconductor cavity or can be present in the injected field,

and their effect should be taken into account together with the external gradients. In

the following we will try to explain the observations considering that three kinds of

forces can act over the soliton: defects, phase and intensity gradients. Other types of

gradients can possibly exist, especially long range gradients due to the temperature

or current profile for example. Their effect, if any, is superimposed to that of cavity

imperfections.

We can identify the role of these three forces by the following experiment, described
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III.3. Phase and intensity gradients

B
A

VCSEL

Figure III.12.: Detail of the near field of the VCSEL with double injection, as shown

in the last picture. The intensity of B, tilted with respect to the axis,

increases from a) (B = 0) to e) (B = 0.92 A) and decreases from e)

to h) (B = 0), while the intensity of A is kept fixed. The horizontal

direction is referred as x

in fig.III.12. We inject as in the previous section the holding beam in form of fringes,

with one beam (A) from the interferometer taken normal to the VCSEL, while the

other (B) forms an angle with the axis. We control now the intensity of B by means of

a polarizer and a half-wave plate (HWP) inserted in arm B of the interferometer. As

discussed in sec.III.3.1, increasing the amplitude of B (from zero to a maximum where

A and B have similar intensities) increases both the amplitude and phase gradients.

Therefore the position of the soliton, for every amplitude of B, will be that where all

the forces, including defects, sum to zero.

In fig.III.12 all the positions of the soliton correspond to equilibrium points, and

the soliton moves continuously with the change of the parameter (the intensity of B).

Referring to fig.III.12, initially (.a) a soliton is spontaneously created by the on-axis

injection of beam A alone. Increasing the amplitude of B, the phase profile tends to

push the soliton to the right of the image. The intensity gradient seen by the soliton,

for small amplitudes of B (.a - .b) has the same sign of the phase gradient, because

the soliton initially is at left of the center of the fringe so the intensity force is towards
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Figure III.13.: Upper-Left: Distance of the soliton from its original position (where

no gradient is applied) as a function of the relative intensity of the

two holding beams (A and B). Upper-Right: Intensity gradient versus

phase gradient calculated at each equilibrium position of the soliton.

Lower-Left: Intensity gradient seen by the soliton as a function of the

distance from its original position. Lower-Right: Phase gradient seen

by the soliton as a function of its distance from the original position.

the intensity maximum to the right. Increasing more the amplitude of B (.b - .d),

the phase force becomes stronger and the soliton is pushed towards the right, passing

through the center of the intensity fringe (.b), where the intensity gradient is zero.

Here (.b) an equilibrium is not possible in such conditions (zero intensity gradient, non

zero phase gradient) unless considering a force directed to the left due to imperfections.

The effect of imperfections is also visible decreasing again the amplitude of B, in fact

the soliton is pushed back to its original position (from .e to .h), that corresponds

to the left side of the intensity fringe where both gradients are non zero for small

amplitudes of B. Again, this would not be possible in absence of a third force due to

defects.

In fig.III.13 the quantitative analysis of these measurements is shown. The posi-

tion of the soliton (with respect to the position for B=0) is shown in fig.III.13.a as a
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III.3. Phase and intensity gradients

function of the relative intensity of the two beams (B/A). It results that the maxi-

mum displacement occurs for equal amplitudes, where the gradients are maxima. In

fig.III.13.c and .d we plot the values of the intensity and phase gradients at each po-

sition of the soliton. For every amplitude of B, the intensity gradient at the position

of the soliton is obtained from the intensity profile on the surface of the VCSEL, and

the corresponding phase gradient is estimated using eq.III.11. In fig.III.13.b we plot

the phase gradient at each position of the soliton as a function of the corresponding

intensity gradient. In absence of imperfections and with a first-order linear effect of

the gradients, this curve should be a straight line (with negative slope), because the

position of the soliton is such that the applied forces always cancel. At equilibrium,

in fact, one would have ∇φ(x) = −α∇I(x) with α > 0 (x > 0 indicates the right of

the images). In the real system this linearity is not observed: for small intensities of

B the equilibrium is found where the intensity gradient has the same direction as the

phase gradient.

Therefore, controlling phase and intensity of the injection we observe the soliton

in stable positions where the two gradients do not cancel (for low amplitudes of B).

Moreover, lowering the amplitude of B, the soliton is attracted back to its original

position where the gradients are not zero for small intensity of B. This can be explained

only by the presence of a third force, due to a defect, attracting the soliton at its

original position. We can estimate the force of this gradient as follows. When the

trajectory in fig.III.13.b crosses zero (at about 7 µm from the initial position, see

fig.III.13.c), the soliton is at the center of the fringe, where the intensity gradient is

zero. So there the effect of the defect should equal that of the phase alone, which has

a value around 0.03 rad/µm.

This result demonstrates that in these VCSELs the combined action of the injection

gradients can move the localized structures over a distance greater than their width,

balancing the force of imperfections. An imperfection is then defined by the point of

the VCSEL that corresponds to the original position of the soliton (when the injection

is normal to the VCSEL), which acts as a source of an attracting gradient. Its effect

can be experienced in an extended region around it: in the case of fig.III.12, a region

of the VCSEL with extent to the right of about 20 µm attracts the soliton to the defect

center, while at left of the imperfection the soliton cannot exist. This imperfection

attracts and stabilize the soliton, but importantly its presence is not necessary for

the soliton to exist. In this way using the interplay of two injected beams it could be

in principle possible to draw a map of the VCSEL defects, as it is described in the

following section.
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III. Experimental study on control of cavity solitons in injected VCSELs

III.3.4. Mapping the defects of the laser cavity

As defects in the laser cavities seems to be the most limiting factor (and the most

difficult effect to overcome) in the practical development of a soliton based device, it is

important to get an insight of their strengths and positions over the transverse plane

of the laser. The aim of this section is to describe a simple method that we propose

in order to get these informations from real systems. Hopefully this can be useful in

visualizing the transverse homogeneity of devices supporting localized structures. In

the practical operation with our devices, even if we can recover by this method the

defects that we have already known, some limitations need to be discussed after its

description.

In all the tested VCSELs we have found that some positions of the transverse

plane are preferred for stable solitons, while others are always avoided. The former

indicate pinning imperfections, the latter repulsive defects. In order to have a map

of all these positions we propose a simple statistical analysis over the stable positions

spontaneously occupied by solitons. We inject the two coherent holding beams coming

from the interferometer as in fig.III.14.a: both wavevectors form the same and opposite

angle with the optical axis. In this way the phase profile is flat, as discussed above,

while intensity fringes are formed on the VCSEL plane by interference. When solitons

are spontaneously formed, as the phase force is absent, they are confined by the

intensity gradient perpendicularly to the fringe, while they are in principle free to

move in the direction parallel to the fringe. The only force experienced along the

fringes is due to imperfections in the medium and/or in the injection.

In fig.III.14.b we plot the output profile of the VCSEL with injection in form of

horizontal fringes. We observe that the cavity solitons are organized along horizontal

lines and ,if the holding beam is removed and reapplied, they appear always at the

same positions along the injection fringes. This means that, inside each fringe, they are

in stable positions defined by imperfections, which remove the translational invariance.

Using a piezoelectric element mounted to the back of the mirror in one arm of the

interferometer, we can change the relative phase of the two beams on a wavelength

scale. This makes the fringes shift slowly (about 1 µm/s) in the near field of the

VCSEL, along the direction perpendicular to them, preserving the angle between the

two beams (so also the size of the fringes and the flat phase profile). The soliton tends

to occupy the stable position defined by the intensity maximum, where the force due

to intensity is vanishing, so the slow shift of the fringe induces a displacement of the

soliton. The motion of each soliton does not follow a straight line but complicated

trajectories are observed, and solitons can also appear and disappear during the shift

of the fringes. The stable positions inside the fringe are defined by the attracting

defects present along the path of the soliton.
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III.3. Phase and intensity gradients

Figure III.14.: Mapping the roughness of the laser plane. a) Scheme of the injection

for these measurements: the two coherent holding beams have the

same angle with the optical axis, in order to have flat phase profile

with intensity fringes. b) An example of near field of the injected

VCSEL, where the fringes are horizontal and solitons present along

them. The fringes are then shifted vertically. c) The result of the

analysis described in the text. Black (white) regions correspond to

pinning (repulsive) inhomogeneities.

Recording the movie of this motion along the whole transverse plane, summing

and normalizing all the frames (which is the digital counterpart for keeping opened

the shutter of analog cameras) one gets the trajectories chosen by each soliton while

it is “pushed” by the moving fringes. Changing now the alignment of the two hold-

ing beams, this procedure is done again for many different directions of the fringes

(covering 0 − 2π), and finally all the frames are added and normalized again. In this

way, statistically, solitons will track all the possible stable positions on the plane. The

most visited points correspond to attracting imperfections, while the regions which

are never visited will indicate the repulsive defects. It is important to note that the

defects evidenced with this method correspond to the ones of the device and not to

the ones of the injection, because the average on all the different alignments should

cancel out the roughness in the injection beams.

The result of this analysis is shown in fig.III.14.c for the laser used also in fig.III.7,

where a black color indicate the most visited regions of the plane (so attracting im-

perfections), while white corresponds to the avoided zones (so repulsive defects). In

a perfectly flat laser this image would be homogeneously gray, indicating that all the

103



III. Experimental study on control of cavity solitons in injected VCSELs

positions of the transverse plane have the same probability to host a soliton. Here

on the contrary imperfections appear. The defects that were visible in fig.III.7 for

different current values are recovered here in a single image, as the lines on the two

sides and the white regions on the top of the image (where no interaction seems to

exist in the soliton range of parameters).

A problem related to the presented method is the fact that it is strictly valid only

when real independent solitons are involved and displaced along the intensity fringes.

In our device it is not yet possible to observe solitons in the whole VCSEL surface

for the same parameters, but bistable independent solitons may coexist with patterns

where the correlation length is longer than the soliton size. If two structures are spa-

tially coupled, then the equilibrium positions they will find is a complicated function

of the parameters. Their positions affect the average, bluring the final image. So

the simple method described above is not strictly reliable when correlated structures

are present. However, even if in fig.III.14.b not all the structures are independent

solitons, some indications of the VCSEL cavity defects can be recovered, as the main

imperfections are well visible.
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Figure III.15.: Holding beam in form of fringes.

III.4. Drift of localized structures

We describe in this section the experimental observations that can be interpreted as

the motion of localized structures in the transverse plane of the injected VCSEL under

the effect of stationary injection gradients. When using an injection profile which is

homogeneous over the whole plane of the VCSEL, we have found quite difficult (even

though not impossible) to observe the motion of a soliton in the transverse plane under

the effect of gradients. In fact, injecting a slightly tilted plane wave, the trajectory

followed by the soliton can be deviated randomly by all types of inhomogeneities of

the system (as cavity and injection defects), making difficult the observation due to

the fast time-scales.

Therefore we opted for the use of fringes that can guide the transverse displacement

of solitons (as in fig.III.15). Fringes are created by the interferometer placed in the

path of the injection beam, as in the previous section. The transverse size of the

fringes is adjusted in order to fit completely the diameter of one soliton (> 10µm).

Alternatively, another solution used was to use a cylindrical lens that reduces the size

of the injected beam to one transverse dimension. Even if some interesting results

were found in this latter case, this method is not very flexible since the injection

parameters (amplitude and phase profiles) depend on the chosen lens together with

its position.

With the use of intensity fringes, the conditions for the existence of localized struc-

tures are verified only in those regions of the transverse VCSEL plane where a suffi-

cient level of injection occurs. When a soliton arises in those regions, it experiences a

strong lateral confinement due to the intensity gradient perpendicular to the intensity

stripes. Then its motion is possible only along the (linear) path defined by the fringe,

where in principle the intensity profile is flat and the intensity gradient negligible.

Detecting the local emission in different points along this path (using a set of fast
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Figure III.16.: Left: near field of the VCSEL with the injection in form of fringes.

The positions and sizes of the regions seen by the detectors A-F are

marked as white circles. Right: corresponding temporal traces recored

by the array of detectors. A constant offset shifts the traces for clarity.

The bias current is 510 mA.

detectors), we could then observe time traces that suggest the displacement of peaks

of intensity, in typical time-scales of ns (that are too fast to be observed by CCD

cameras, that integrate over ms).

III.4.1. Results

The phenomenology experimentally found in our system is quite rich. We divide for

clarity the description of the results in three parts.We discuss the observation of single

shifting pulses which are randomly distributed in time in sec.III.4.1.1 and the tran-

sition to a periodic shifting regime in sec.III.4.1.2. The onset and drift of a single

localized structure can also be optically triggered close to these region of parameters.

This shows the feasibility of an optical shift register based on localized structures,

and will be the subject of sec.III.4.3. The spatio-temporal dynamics observed is very

sensitive to the parameters, rendering the experimental exploration and characteri-

zation difficult. Many details of the observations need to be further investigated but

the motion of structures can be clearly identified.

106



III.4. Drift of localized structures

III.4.1.1. Randomly activated shifting events

We inject the holding beam passing by the interferometer and we adjust the alignment

in order to have the fringes as in fig.III.16 (left). The VCSEL current is 510 mA, and

the total injected power is about 15 mW. We are interested in the central fringe on

the VCSEL, where a localized structure is spontaneously formed. The positions and

dimensions of the detectors are indicated on the image by white circles. They are

adjusted parallel to the central fringe in order to have the bright structure between

the first two detectors. Their recorded temporal traces (A and B in fig.III.16 right)

show anti-phase oscillations of the local intensity (at about 100 MHz) where the

structure appears. This seems to indicate that this structure is oscillating back and

forth around an equilibrium point caused probably by a pinning defect of the VCSEL

structure. More importantly, the other four detectors show that an impulsion starts to

propagate towards the external part of the device. When this propagation is started

(around t = 65 ns), the oscillations in the two upper detectors stop and restart after

few ns. The amplitudes of the oscillations in the two first detectors and those of the

escaping pulses have the same magnitude, suggesting the interpretation of one single

moving localized structure. This kind of shifting events occurs randomly, or can be

triggered by a mechanical perturbation.

Even if the origin of these oscillations is not clear, it is possible to interpret this

observation as the motion of a localized structure which is weakly pinned by an

imperfection of the system, and which is induced by a stationary holding beam profile.

It is important to note that previous demonstration of the plasticity of CS [61] relied

on the modification of the spatial profile of the injected beam in the course of time.

We remark that the behavior described above is only possible in very precise con-

ditions of alignment, which are obtained by tilting the two holding beams coming

from the interferometer with respect to the VCSEL axis. While this induces a phase

gradient (which cannot be estimated here) along the intensity fringe defined by the

holding beam, it also induces a radial intensity gradient. In fact, when tilted with

respect to the VCSEL axis, the holding beam waist does not match anymore the

VCSEL borders and homogeneity in terms of intensity is not assured. Indeed, in the

direction of the fringe, the intensity of the injected beam decreases almost linearly

from the maximum at the central region to the boundary of the laser (where its value

is 40% of the central maximum). In the other direction, the amplitude modulation

perpendicular to the fringes has an amplitude of 96% of the maximum. Therefore it

is worth noting that the motion is done towards decreasing injected amplitudes: this

would indicate that in this case the phase gradient, even if we cannot estimate it for

these set of measurements, is more effective than the amplitude gradient, as the latter

should induce a velocity opposite to that measured.
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III. Experimental study on control of cavity solitons in injected VCSELs

Figure III.17.: Left : time traces for 3 detectors along the injected line. A constant

offset shifts vertically the traces for clarity. Right : superposition of

50 events on 3 detectors. The pulse propagates along the injected line

with always the same shape and speed. The near field of the VCSEL

is shown in the inset. The current is 441.72 mA.

In fig.III.17 we show a similar result observed in an other 200 µm-diameter device

using a cylindrical lens instead of the interferometer in order to confine the injection

along a line. The current is 441.72 mA and along the injected line the amplitude has

a central maximum and decreases on the edges at a value of 30% of the maximum.

The total injected power is again around 15 mW. In this case no structures are visible

in the integrated image of the CCD camera in this region of parameters, but the

observation of the time traces shows that a peak of intensity arises spontaneously (see

fig.III.17 left) and escapes along the injection line immediately after its appearance,

as indicates the delay of 3 ns between the peak measured by two consecutive detectors

(see fig.III.17 right).

As before it seems that the pulses are originated randomly in time, but here a low

amplitude modulation is visible in the traces of all the detectors. The origin and role

of this global modulation is unclear: it appears after every high pulse, synchronously

in all the traces, as a damped relaxation around 10 MHz and lasting few hundreds of

ns. It can also appear without the generation of pulses, but it seems to participate

in their excitation. In fact two subsequent pulses of a same trace are often found in

correspondence of two local maxima of the small modulation. In this way we will see

that, increasing the pumping current, in fig.III.17 the appearance of pulses becomes

more frequent, and always synchronized with the small amplitude modulation. Finally
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III.4. Drift of localized structures

a periodic train of pulses is found for higher currents. This transition will be described

more in detail in the following section.

A possible interpretation of this observation rely on the fact solitons in general can

be switched-on by an addressing beam or they can appear spontaneously induced by

the noise of the system when the parameters are close to the values for which the

homogeneous solution looses its stability. Then, in this region of parameters, noise

would be responsible for the switching-on of a soliton. Once created, the soliton drifts

along the intensity channel, driven mainly by the phase gradient as discussed above.

Importantly, even if randomly activated, the motion of the structure is always

identical, within the limits of our detection system (350 MHz, but we will see that

it is sufficiently accurate), as shown in fig.III.17 (right). With stationary control

parameters neither the delay between traces nor the shape of the peaks change, and

the triggered traces in fig.III.17 can well be superimposed. This is also in agreement

with the interpretation of drifting cavity solitons because the speed of the localized

structure is determined by the external gradients, and its shape should be defined by

nonlinearities of the system.

We can get an indication about the size of the moving structure from the following

argument. In both cases presented above, the intensity recorded by the detectors

corresponds to the value of the convolution between the drifting structure and the

aperture of the detector on the near field (which is controlled by the imaging system).

We observe pulses that do not saturate, not showing a clear top flat profile. This

would indicate that the drifting structure and the recording area of each detector

have comparable sizes (around 7-8 µm). This is of the same order of the waist of

solitons at rest, giving another indication in favor of the interpretation.

Other randomly activated motions similar to those described in fig.III.16 and III.17

have been observed along several directions of space and for different devices (coming

from the same wafer and with a diameter of 200 µm). These observations show that

the inhomogeneities present in these improved semiconductor lasers are weak enough

for the gradients of the holding beam to induce motion along the imposed direction

along several tens of µm. The alignment of the injection and the VCSEL current level

are critical parameters, rendering this dynamics quite difficult to find experimentally.

We will see that the periodic regime that will be described in the next section can

help in finding the good region of parameters.

III.4.1.2. Periodic regime

In both cases described in the previous section, a set of high intensity pulses is spon-

taneously created, indicating the drift of a localized structure triggered by internal

mechanisms and noise. Here we describe the behavior of the system when the bias
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Figure III.18.: Time traces of the detector placed where the first pulse of the series

shown in fig.III.17 grows. The VCSEL current increases from left to

right, top to bottom, from 441.72 mA to 441.75 mA.

current is increased from fig.III.16 and fig.III.17. We will see that a periodic regime

is attained in different ways.

We first describe the effect of the increase of current for the injection shown in

fig.III.17. Referring to fig.III.18, for low currents (upper row, left) in each trace the

pulses are rare and noise-triggered. Increasing further the bias current they become

more frequent, and finally the signal of each detector becomes periodic. Here the small

amplitude modulation, as discussed above, is present in the traces of all the detec-

tors, and probably plays a role for the observed dynamics as a triggering mechanism.

For higher currents, once the motion is periodic, the frequency increases slightly with

current in a range of about 1 mA up to about 100 MHz (period of 10 ns), while the

sequence of drifting remains the same (this means that the traces of two consecutive

detectors show a periodic train of pulses with a delay of few ns between them). While

two consecutive events approach continuously with increasing current, we do not ob-

serve a clear variation of the time between two consecutive peaks in two consecutive

detectors when the current is increased. This means that once the motion is activated,

the speed of the structures does not change appreciably within this small region of

current, at least within our temporal resolution of 350 MHz.

In fig.III.19 we plot the mean value (continuous line) and the standard deviation

(dashed line) of the time interval between two consecutive pulses in the same trace.

Noise seems to drive the dynamics for low currents (441.7 mA), where groups of
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Figure III.19.: Statistics of the time between two consecutive peaks in the trace of the

same detector (detector A of fig.III.22). Continous line: mean value.

Dashed line: standard deviation.

pulses, probably coupled by the small amplitude modulation, are separated by many

µs. Here the standard deviation is of the same order of the mean value, indicating the

main role of noise as switching-on mechanism (but the statistics are calculated for a

low number of events in this region because of the large time intervals). For higher

values of current the traces become periodic, the number of events grows and the mean

value (which gives now the period) decreases down to about 10 ns while the standard

deviation is reduced to few hundreds of ps (the digital limit of our resolution is 500

ps). Increasing more the current, an abrupt transition to a stable emission profile is

observed, where no oscillations are present, indicating subcriticality.

The smooth transition to a periodic regime as described above was found also for

other directions of the injection and in different devices. However this is not the

only possible transition to this regime. In fact, we have found that, starting from

the situation shown in fig.III.16, an increase of the bias current makes the system

subcritically jump to the periodic drifting. Increasing the current from 510 mA to 512

mA, the system abruptly changes its near field and the time trace of each detector

becomes periodic, as shown in fig.III.20. A further increase of the current has the

effect of increasing the frequency of the periodic signals, very similarly to what shown

in fig.III.19. Around this transition region hysteresis is observed between the two

solutions (i.e. the periodic regime and the pinned structure giving random shifting

events described in fig.III.16).

From the experimental point of view the presence of such periodic regimes helps

the identification of the good parameters where motion appears. In fact exploring

the system the more accessible information is given by the integrated CCD images.
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III. Experimental study on control of cavity solitons in injected VCSELs

Figure III.20.: Periodic spontaneous regime. Right: near field of the injected VCSEL.

The injection is made of interference fringes and the positions of the

detectors are the same as in fig.III.16. Left: time traces of the array

of detectors. Each trace is vertically shifted for clarity. The current is

512 mA.

When rare pulses are randomly triggered nothing is visible in the near field of the

VCSEL. On the contrary the periodic regime is well visible as a bright stripe as in

fig.III.20 (right). Experimentally this is the signature that motion along the injected

line is possible.

Finally, in order to further confirm the interpretation of drifting structures, we

could increase the bandwidth of the detection system up to 6 GHz and observe the

pulses emitted by the system. We use a 8 GHz (Thorlabs PDA8GS) fiber coupled

detector in combination with a 6 GHz oscilloscope (Lecroy WM8600A) at the place of

the array of avalanche photo-diode detectors (350 MHz). In this way we can monitor

the emission of a single region of the VCSEL with diameter less than 7 µm with

a temporal resolution of 50 ps/point. We show the result in fig.III.21, where we

have fixed the parameters in the region of periodic pulses, but the result is the same

when randomly activated pulses are present. The fast detector used here has less

sensitivity than the APDs used before, so the signal to noise ratio decreases. Anyway

it is important noting that no temporal structures are visible inside a pulse at high

frequencies up to 6 GHz, confirming the interpretation of a moving peak of intensity.

Moreover this measurement indicates that the bandwidth of 350 MHz used in the

previous measurements gives a sufficiently accurate description of the dynamics.
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Figure III.21.: Lower trace: temporal detection of the periodic regime with a band-

width of 6 GHz. Upper trace: smoothed trace using the convolution of

the detected signal with a unitary vector of 6 elements (every point of

the trace is replaced by the mean value of the signal calculated over 6

points around it).

III.4.2. Discussion

We have described the phenomenology of the injected VCSEL when one transverse

degree of freedom of the solitons is eliminated using an interferometer or a cylindrical

lens in the injection path. Similar results were found in different devices and for

many directions on the VCSEL plane. The system exhibits a rich spatio-temporal

dynamics with strong dependence over the parameters. We have observed noise-driven

regimes where a single structure moves along the injection gradients, and a smooth or

subcritical transition between these randomly activated pulses and a periodic regime.

When this transition does not happen subcritically, the presence of a small ampli-

tude modulation seems important, even if its role needs to be clarified. Summarizing

this case, increasing the parameter (in a small range of less than 1 mA, with DC level

of 440 mA) we have observed (see fig.III.18):

1. for low current, a region where the ignition of the drifting peak is due to the

internal noise, so the motion along the gradient is randomly activated while

itself remains deterministic;

2. for higher currents, these random events become more frequent and the signal

of each detector periodic with increasing frequency and with constant delay

indicating constant velocity;

3. a constant emission attained by a subcritical transition.
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III. Experimental study on control of cavity solitons in injected VCSELs

It is interesting to note that the above sequence reminds the behavior of the injected

VCSEL in standard conditions, when no gradients are present in the holding beam

and when the structures are stable. In such conditions, increasing the bias current

of the VCSEL, one observes initially single localized structures, then patterns that

have transverse length decreasing with increasing parameter. If these stable struc-

tures could drift under the effect of external gradients, a sequence similar to the one

described above would be observed: for low current single drifting solitons switched-

on by internal noise, and for higher currents a periodic train of drifting pulses whose

frequency increases as a function of the parameter. This intriguing similarity is just

qualitative, because the orders of magnitude of the current intervals do not match.

In fact, in the case of the patterns shown in fig.III.7 the current range is of the order

of 100 mA, while the variations in fig.III.19 are less than 1 mA.

III.4.3. Optical delay line

One possible practical application of a soliton-based optical device is the all optical

capability of shifting in the space bits of information. This feature is know in general

as shift register, and here we demonstrate that in principle it is feasible in our system.

In digital circuits a shift register is a group of registers set up in a linear fashion

which have their inputs and outputs connected together in such a way that the data is

shifted down the line when the circuit is activated [93]. In our system we can transform

a serial input into a parallel output, using the properties of localized structures moving

under the effects of injection gradients. A soliton can be switched-on in one point of

the plane of the VCSEL by the optical input bit given by the writing beam, and then

it can drift along the injection gradients. All along the path followed by the soliton

one can retrieve the optical input bit placing a detection system, which means that

the serial input information is distributed in a parallel optical output line with some

delay that in principle depends on the speed of the structure.

Here we demonstrate the possibility of optically induce the switching-on of a single

localized structure inside an injection profile that produces the drift of the structure.

Once the optical perturbation that induces the onset of the soliton is removed, we

observe a drift along the injection gradients over distances of many tens of µm (which

corresponds to many soliton diameters) in tens of ns, i.e. speed greater than 103

m/s. As we do not have at the moment the possibility of fine tuning the injection

parameters, the speed of the structure is not easily variable experimentally. It will

be very interesting and important in the future testing the possibility to control this

velocity by means of the imposed gradients in the injection beam.

We fix the parameters as the ones for which fig.III.17 was found. Lowering the bias

current of the VCSEL (less than 1 mA while the DC level is around 442 mA), the
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III.4. Drift of localized structures

Figure III.22.: Left : near field of the VCSEL, with injection on a line given by the

cylindrical lens. The positions and sizes of the detectors are indicated

by the black squres. Right : Corresponding temporal traces of the

detectors. A constant vertical offset shifts the traces for clarity. The

writing beam pulse is addressed on the detector A. The structure then

moves from A (upper trace) to F (lower trace). Current: 441.7 mA.

noise-triggered events become rare and finally disappear. In this limit region where

they are absent, we found that the local optical perturbation, given by the pulsed

writing beam, could trigger the switching-on and motion of one structure. This can be

interpreted by the following argument: decreasing the pumping parameter decreases

the effectiveness of the noise acting as ignition mechanism (always keeping the system

in the region where solitons exist), then the switching-on threshold can be achieved

by the optical perturbation.

Experimentally we use the writing beam with modulated amplitude by the EOM

(see sec.III.2) as input bit. Because of technical limitations the duration of this

perturbation is fixed to 100 ns (with rise and fall time less than 1 ns) and the repetition

rate is fixed by the EOM driver at 10 KHz. The result is presented in fig.III.22.

The writing beam is addressed in point A where the first detector is placed. The

observations indicate that the first effect of the perturbation is to locally trigger the

ignition of a cavity soliton (trace A). Once the writing beam is removed the soliton is

free to move along the imposed direction under the action of phase and/or intensity

gradients of the holding beam. The motion is monitored following the passage of the

structure in front of the series of detectors. In this case, the cavity soliton drifts up

to the detector E, and vanishes rather abruptly when arriving on the detector F. The

result shown in fig.III.22 constitutes a demonstration of an all-optical delay line, since

a bit of information applied at point A can be recovered at point E after a delay of

about 10 ns. Since the distance on the VCSEL plane between two detectors is of 8.9

µm, the soliton drifts over about 45 µm and we can estimate the speed between points
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Figure III.23.: Two similar results found in two different devices of 200 µm diameter.

Right : this is a zoom of fig.III.22(right). The speed of the structure is

around 2.1 µm/ns, the current is 441 mA. Left : same as before but in

another device under different injection parameters. Here the speed is

around 9.6 µm/ns and the bias current 484 mA.

C and E of fig.III.22 (right) about 2.1 µm/ns. This confirms that the effect of cavity

imperfections can be overcome by external gradients and that the presence of defects

is not necessary for the existence of cavity solitons.

In fig.III.23 we compare the previous result (right) with a similar observation ob-

tained in another identical device (left), focusing on the interval of time where the

structure escape along the gradient. The current in the latter case (left) is 484 mA,

and the speed of the structure is higher than the previous one, estimated around 9.6

µm/ns. Even if we cannot at the moment study the relationship between velocity

of the structure and variations of the gradient, this measurement demonstrates that

the observed behavior is general and gives an indication that under different injec-

tion conditions, the speed of the localized structure can change. Of course the fact

that these results are found in two different devices does not allow us to indicate the

difference in injection gradients as the only mechanism responsible for the difference

in speed. There are for example theoretical indications [94] that the speed depends

also on the carrier lifetime of the laser, however as the two lasers come from the same

wafer, this parameter should be very similar (because in order to change it an involved

engineering of the band gap is needed).
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III.5. Control of localized structures position by means of external gradients

III.5. Control of localized structures position by means

of external gradients

We have seen that the control of the motion and/or of the position of the localized

structures depends mainly on the practical ability in manipulating the phase and

amplitude of the injected beam. In the previous section we could not generate an

arbitrary gradient profile in the holding beam, nor we could separate the contribution

of the two gradients. Here we describe the experimental system that successfully gave

us the possibility of an arbitrary injection profile. Then the separation of phase from

amplitude modulations is possible and we can arrange a set of localized structures in

a predefined configuration.

In the following we will describe the substantial changes in the experimental setup

necessary in order to control the phase and amplitude profile of the holding beam.

Then we will show results obtained with a controlled modulation of the injection phase

and amplitude. In the last part we will show that a modulation of phase alone is able

to fix the position of the solitons.

III.5.1. Experimental Setup

We use as a spatial modulator for the holding beam a liquid crystal light valve (LCLV)

in conjunction with a twisted nematic liquid crystal display (LCD). Unfortunately we

are obliged to use both of them together because the LCD (which normally can be

used alone as a spatial modulator) is not efficient at the wavelength of the VCSEL

(980 nm).

The idea is to use the LCLV ability to change locally its index of refraction, in

order to modulate the transverse phase and/or intensity distribution of the incident

beam that will be used for injection into the VCSEL. A modification of the index of

refraction of the valve can be coupled with a rotation of the polarization of the incident

beam. In this case an amplitude modulation can be achieved putting a polarizer at

the output of the valve. Otherwise only the phase will be affected. The arbitrary

index modulation is brought to the LCLV by a beam (at λ = 658 nm) passing by

the LCD. This works as a normal computer display once it is positioned between two

crossed polarizers. Then the image created on a computer is converted by the system

in a phase and/or amplitude modulation of the holding beam.

III.5.1.1. The liquid crystal light valve

Liquid crystals are anisotropic media whose molecules have an elongated shape. Large

cells (cm2) of liquid crystals can be created and the orientation of molecules can be
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III. Experimental study on control of cavity solitons in injected VCSELs

Figure III.24.: Scheme of the Liquid Crystal Light Valve (LCLV).

partially ordered. In the nematic phase, at the base of our device, molecules are in

average aligned along one direction which defines the vector n̂, called director of the

liquid crystal. The ratio between the length and width of a molecule is quite large.

Indeed, the typical dimensions of a liquid crystal are 20-40 Å in length and 4-5 Å in

width. Birefringence of the medium is given by the difference in index of refraction

between the direction parallel to n̂ (the extraordinary index is ne = n// ' 1.7) with

respect to the direction perpendicular to n̂ (the ordinary index is no = n⊥ ' 1.5).

The Liquid Crystal Light Valve, as shown in fig.III.24 [95], is formed by a liquid

crystal layer in between a glass and a photo-conductive plate over which a dielectric

mirror is deposed. The liquid crystal is planar aligned, and the cell thickness is usually

few tens of µm. Transparent electrodes (ITO) covering the glass plates permit the

application of an external voltage Vo across the LCLV (chosen alternate in order to

avoid a net drift of the molecules). The photo conductor behaves like a variable

impedance, its resistance decreasing when increasing the intensity of the light Iw
impinging on the rear side of the LCLV. Thus, the total root mean square voltage

VLC that effectively drops across the liquid crystals is directly proportional to the

applied electric voltage Vo and to the optical intensity Iw arriving to the rear of the

valve.

Under application of the effective voltage VLC , the liquid crystal molecules reorient

towards the direction of the electric field [96]. This happens at the Fréedericksz

transition [97][96], when the torque due to the electric field is higher than the effective

internal forces. For high values of VLC the liquid crystals reorient perpendicularly to

the glass windows (homeotropic alignment) and the response saturates when all the

molecules are parallel to the applied electric field. In absence of voltage the elastic
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Input Polarization

Polarizer direction

y

x

Figure III.25.: Scheme of the output polarization states (dashed lines) as a function of

the phase shift between the vertical and horizontal component, when

the input linearly polarized field (thick line) enters in the valve at an

angle of 45o with respect to n̂ = nŷ. If a polarizer is used perpendicular

to the input polarization, the amplitude modulation is possible.

forces internal to the liquid crystal reorient again the molecules parallel to the glass

windows. The molecular orientation is then reversible.

The input beam, which passes through the liquid crystal layer and is reflected

by the dielectric mirror of the LCLV, undergoes to a phase shift that depends on

the applied voltage VLC . It is useful to decompose the incoming electric field in the

directions parallel and perpendicular to the crystal director. Under the effect of VLC
the molecules rotate in average on the plane defined by n̂ and ẑ (the propagation

axis), so this reorientation induces a refractive index change only for the component

of the input field parallel to n̂, depending on the voltage VLC . In other words the

extraordinary index ne is a function of the effective voltage VLC . On the contrary,

the component perpendicular to n̂ does not see any change of the index, because

the reorientation of the molecules is on a plane perpendicular to it. As a result, the

component of the input beam parallel to n̂ undergoes a phase shift with respect to

the component perpendicular to n̂. This phase shift ultimately depends on the light

intensity impinging on the photoconductor, Iw, and on the electric voltage applied to

the valve Vo.

If the input (TE) beam is now linearly polarized, as in fig.III.25, at an angle of 45o

with respect to n̂ (that we fix to be vertical with respect to the table), then the output

polarization state depends on the effective voltage VLC . In fact a phase shift of the

vertical component with respect to the horizontal one, gives rise to a different output

119



III. Experimental study on control of cavity solitons in injected VCSELs

RED1

BE

HW5

C

M

LCD
P1 P2

PC
SL

LCLV

L13

Figure III.26.: Experimental setup: spatial modulation Iw(x, y) (RED1) of the beam

at λ = 658 nm for the rear side of the LCLV.

polarization (from circular to linear π/2-rotated). Using at the output a polarizer

perpendicular to the input polarization, the phase shift is converted in amplitude

modulation.

If instead the polarization of the input beam is parallel to the molecules, then only

its phase is varied, spatially (along x and y) modulated according to the distribution

in the transverse plane of the voltage VLC . This effective voltage in fact depends on

Vo, which is constant on the plane of the valve, and on Iw(x, y) which on the contrary

can have any spatial profile. Therefore, modifying the spatial profile of the intensity

Iw(x, y) impinging on the rear side of the LCLV, is then possible to modulate with

an arbitrary profile the phase or intensity of the input beam Ein. For our system, we

find that intensities Iw of the order of 0.1 mW/cm2 saturate the response of the valve

which allows for maximum phase differences of the order of 2.5 rad (' 0.8π) when

Vo ' 2.2Vpp (9 KHz).

III.5.1.2. The twisted nematic liquid crystal display

As shown in fig.III.26, we use the light coming from a semiconductor laser (SL) emit-

ting in the visible red region (λ = 658 nm) to create the modulation Iw(x, y) for the

rear side of the LCLV, that will be converted in phase modulation for the holding

beam. The collimated beam of SL is expanded by a beam expander (BE) and it is

sent through the liquid crystal display (LCD) between two crossed polarizers (P1,

P2). The polarization is turned (by the half waveplate HW5) in order to be parallel

to P1. Every pixel of this device is driven by the voltage coming from a standard

computer as for a normal display (1024x768 pixels). In absence of voltage across the

pixel, the anchorage to the glass walls makes the molecules to form one or more spirals

(twisted nematic anchorage), as in fig.III.27 (left). As the thickness of the device is

120



III.5. Control of localized structures position by means of external gradients

Figure III.27.: Scheme of the twisted nematic liquid crystal display, in absence of the

external voltage (left) light can cross the device, with applied voltage

(right) light is absorbed.

much longer than the wavelength (Mauguin condition [96]: λ� (ne − no)Phx, where

Phx is the length of the spiral), the spiral of liquid crystals acts as a waveguide for the

incoming field. In this way the output polarization is turned by 90o with respect to

the input, and the use of the two crossed polarizers (parallel to the input and output

anchorage respectively) allows in this situation the passage of the light.

When a voltage is applied across the pixel (above the Fréedericksz transition), the

spirals are destroyed (but the process is reversible because of elastic forces) by the

reorientation of the molecules as in fig.III.27 (right), and the polarization is no more

turned. The output polarizer then prevents the passage of the light. As a function

of the applied voltage (which has 255 levels) the intensity of the output light can be

varied accordingly. In this way we can generate the spatial modulation for the LCLV

simply generating on a computer the suitable image. Finally the lens L13 makes the

image of the display LCD onto the rear side of the LCLV, supplying the intensity

distribution Iw(x, y).

III.5.1.3. Injection of the modulated holding beam

We can describe now the modifications of the injection system once the LCLV is

inserted as a spatial modulator of the holding beam. The differences can be evidenced

with respect to fig.III.4. The setup used in the following is shown in fig.III.28.

The holding beam HB2 is spatially filtered by the Fourier filter L7-PH30-L8 and is

sent to the LCLV that is placed in one arm of a Michelson interferometer. The rear

side of the LCLV is enlightened by the beam RED1 described in fig.III.26, changing the

effective voltage profile on the plane of the valve. The beam splitter CBS preserves

the polarization, and the director n̂ of the liquid crystals is fixed vertically. The

polarization of the beam arriving on to the LCLV (which is linear and vertical with
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Figure III.28.: Experimental setup modified from fig.III.6 by the insertion of the

LCLV.

respect to the table plane after the Fourier filter) is controlled by the half wave plate

HW3. The polarizer P at the output of the LCLV is oriented at +45o with respect

to the vertical. Fixing the angles of the two half wave-plate HW3 and HW4 is then

possible to produce phase or intensity modulations separately.

A pure phase modulation is produced injecting on the LCLV the beam with vertical

polarization (parallel to n̂), as discussed in sec.III.5.1.1. In this case the output

polarization from the LCLV remains vertical and is turned by the half wave-plate

HW4 (fixed at +22.5o) in oder to match the angle of the output polarizer P. An

amplitude modulation is generated by the injection on the LCLV of the beam with

polarization turned (by HW3) at −45o. The output polarization state then depends

on the effective voltage across the the valve, as in fig.III.25. Then the half wave-

plate HW4 is turned parallel to the output polarizer P, which converts the phase in

amplitude modulations.

The positions of the lens L9 and L10, together with the collimator C, are chosen in
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III.5. Control of localized structures position by means of external gradients

Figure III.29.: A) computer created image, sent to the rear side of the LCLV. B)

phase modulation made visible by interference on the plane of the VC-

SEL. C) residual (normalized) amplitude modulation, found by back-

ground substraction. This can be eliminated by reducing the high

frequency components of the image sent to the LCD and arriving to

the LCLV.

order to form the image of the plane of the valve over the VCSEL. The magnification

of this imaging system is of the order of 0.04, so we can use a region of 0.5 cm on the

valve to cover the VCSEL diameter of 200 µm. Equivalently, the near field image of

the VCSEL (NF3) is formed on the plane of the valve. Other near field images are

found as before in the detection system (see Detection in sec.III.2), NF4 in the plane

of the array of detectors DA, NF2 on the CCD camera and NF1 in the plane of the

iris. The insertion of the writing beam can be done trough the beam splitter BS4.

In this configuration the phase profile of the holding beam injected in the VCSEL

is very close to that arriving on the valve, because of the imaging system between

them. We need, before creating any modulation, that the field arriving on to the

VCSEL could be well approximated by a plane wave. This means that the amplitude

and phase profile should be the as flat as possible in order to better control and

understand the effect of a modulation. Then as a compromise between power and

profile flatness, the amplitude waist of the beam arriving on the VCSEL is chosen of

the same order of the laser diameter. In terms of gaussian beams, in order to have

a flat phase profile on the VCSEL we would have to fix the position of the waist of

the beam on the plane of the valve. This would be transfered without diffraction to

the VCSEL surface by the imaging system. However the waist should have transverse

dimension of about half a centimeter on the valve, and we have found difficult to

locate a waist so large exactly along the axis. Therefore we use as an alternative

method for having confidence that the phase profile is flat, the minimization of the

far field size of the beam reflected on the VCSEL, placing lens L8 at almost its focal

length from the pin hole PH30. In these conditions the transverse wavevectors of the

injected field should be minimized on the valve and on the VCSEL plane.
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In the measurements described in the following, we were mainly interested in mod-

ulating the phase of the holding beam more than its amplitude. This is because the

latter is a control parameter for the solutions of the system, so it may change their

stability or even change the solutions themselves. The phase on the contrary should

not change the nature of the solutions of the system, in principle producing only a

drift of the existent solutions which are controlled by other parameters. It is then

interesting to see if the control of localized structures with fixed parameters along the

transverse plane is possible with the phase alone.

The empty arm of the interferometer (CBS-M1) is then opened to visualize on the

VCSEL the phase modulations, otherwise not visible, created by the valve as a shift

of the interference fringes, and during the experiment will be always closed. A typical

example of the phase modulation created by the LCLV, visualized by the use of the

interferometer is shown in fig.III.29.b . This is the image of the VCSEL plane NF2

on camera CCD1, with no current injection in the laser (so the VCSEL acts simply

as a mirror) and modulated phase of the holding beam. The image sent from the

computer, shown in fig.III.29.a , is an hexagonal matrix of black circles on a white

background. The phase modulation, given by the modulation of the index of the

liquid crystal, is then visible as an amplitude modulation by the interference of the

two arm of the interferometer.

Experimentally we have found quite difficult to produce pure phase modulations of

the holding beam. With the profile of fig.III.29.a applied to the LCLV, we obtain the

spurious intensity modulation shown in fig.III.29.c, which has (once it is averaged on

a cavity soliton size) an amplitude of 15% of the mean injected value. The origin of

this effect is not clear, but it seems related to the presence of high spatial frequencies

in the image sent to the LCLV. In fact when we use a high contrasted image (like the

one in fig.III.29.a) with high frequencies components (steep gradients from white to

black), the corresponding regions become visible as an amplitude modulation. Indeed

the visible intensity modulation consists in black rings corresponding to the borders

of each circle of the image sent by the computer. However we have indications that

the small intensity modulation plays a minor role in pinning the localized structures,

as it is discussed in the next section.

III.5.2. Results

As a first result we show in fig.III.30 the spatial arrangement of the localized structures

with the injection shown in fig.III.29. We fix the current of the VCSEL at 560 mA,

the total injected power is around 15 mW and the modulation on the LCLV consists

in a hexagonal matrix of highly contrasted circles. Then the phase step between the

background and the flat top of each circle of the injected image is about 0.8π rad.
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III.5. Control of localized structures position by means of external gradients

Figure III.30.: a) VCSEL electrically driven at 560 mA, under modulated holding

beam injection. The hexagonal phase and amplitude modulations are

shown in fig.III.29. b) same as before but the modulation in the holding

beam is removed. c) The positions of the pinned structures (with

modulation in the holding beam) are superimposed to the injected

phase modulation and d) to the amplitude modulation (see fig.III.29).

Together with it, a small amplitude modulation is present at the edges of each circle,

as discussed above. Every black circle of the injected profile defines a small circular

region where a localized structure could be confined by the strong phase gradient

present at the border. It results that the spatial organization of the structures in

the near field (fig.III.30.a) well follows the injected profile, as they are pinned at the

positions defined by the external hexagonal modulation when it is present. When the

modulation is removed, just blocking the rear side of the LCLV from the RED1 beam

(fig.III.30.b), a complicated dynamical state is found where the hexagonal organization

is absent. This demonstrates that the imposed modulation of the holding beam is

necessary for the spatial distribution of the localized structures.

In fig.III.30.c and .d we show the relative positions of the structures over the corre-

sponding phase (.c) and residual amplitude (.d) modulation (of fig.III.29). It results

that the position of each localized structure is pinned laterally with respect to the

center of each black circle forming the injected modulation image. More importantly,

these stable positions correspond to local minima of the spurious intensity modula-

tion, as shown in fig.III.30.d . This indicates that the phase gradient is the responsible
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Figure III.31.: Near field of the injected VCSEL for increasing current (from left to

right: 557, 563, 565, 567 mA) with a square grid phase (and spurious

amplitude) profile of the holding beam.

for the pinning, because the intensity gradient tends to destabilize the structures at

their positions. Their positions, blocked along the edges of the circles with a similar

orientation, could be explained by the presence of a residual gradient along a direction

close to 45o in the images, due to a light misalignment of the holding beam or to a

small long-scale variation of the cavity length along the device. This residual gradient

would “push” the structures inside the circular confining region of phase (where they

are in principle free to move) until they are blocked by the effect of the border, where

the phase gradient is maximum.

Solitons can spontaneously arrange their positions, in absence of any external mod-

ulation, in order to form hexagonal arrays [98] [99]. So we have to show that the

configuration chosen in fig.III.30 is not special and that solitons can follow a different

modulation. This is done in fig.III.31 where the imposed modulation is a square array

of contrasted circles of the same size of fig.III.30. Here we increase the pumping cur-

rent of the VCSEL from 557 mA (left) to 567 mA (right). This induces the formation

of localized structures at the position of the phase maxima. The intensity modulation

visible here is mostly a result of (eventually non linear) amplification of the injected

beam in the VCSEL cavity. Finally, we notice that while each structure switches on

in a subcritical way (i.e. there is a bias current region for which each structure is

bistable), the structures could not be made all bistable for the same current value,

and this was true also for the result of fig.III.30. This phenomenon can be attributed

again to residual long range inhomogeneities, mainly in the local resonance frequency

of the VCSEL structure [100][101].

In order to further verify the possibility to control the positions of the solitons by

the phase of the holding beam alone, we reduce the remaining intensity modulations

using a smoothed image sent to the LCD, where high spatial frequencies are absent.

In the set of measurements shown in fig.III.32 we have found that a smoother profile

126



III.5. Control of localized structures position by means of external gradients

Figure III.32.: Left: Near field of the injected VCSEL with holding beam phase-

modulated by an almost sinusoidal hexagonal spatial profile. Center:

same as before but the phase modulation is blocked. Right: differ-

ence between the modulated and non-modulated holding beam. The

positions of the pinned structures is marked with bright spots. The

visible remaining amplitude modulation of the holding beam is small

compared to the spatial noise of the injection.

on the LCLV has the effect to reduce the intensity variations of the holding beam

at the plane of the VCSEL, which are present in correspondence of steep variations

of the index of the valve. In this way we obtain a spurious intensity modulation

completely negligible at the soliton scale (see fig.III.32(right)). Therefore we can be

confident that in these measurements the phase modulation (whose amplitude remains

as before of the order of 0.8 π) is more effective than the amplitude over the positions

of the structures. On the other hand the phase gradient is reduced by the use of such

smoother modulation.

However, the spatial organization of the localized structures, shown in fig.III.32

(left), well follows the imposed hexagonal phase modulation. When the modulation

is blocked (center), the same arrangement is not preserved. At right the remaining

amplitude modulation is shown together with the position of the structures. This

small amplitude modulation is completely hidden by the noise in the spatial profile,

it does not have a clear hexagonal profile and should not be able to pin the solitons.

This fact builds confidence that phase modulations alone can stabilize the localized

structures in predefined positions of the transverse plane.
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III.6. Conclusions

This part of the thesis is devoted to spatial localized structures, which are found in

the transverse plane of injected semiconductor VCSELs. Thanks to the improvement

of the growth processes (by Ulm Photonics), we can now take advantage of more

homogeneous devices, where long scale spurious cavity gradient, main limiting factor

in the past, are greatly reduced. In these new devices we could demonstrate some

important features of cavity solitons, related to the effects of external perturbations

over the system.

Firstly, we could elucidate the role of small-scale imperfections in the cavity. Due

to the random distribution of impurities on the plane of the VCSEL, the probability to

host a soliton is not evenly distributed on the transverse plane of the laser. Attracting

defects are defined by the stable positions spontaneously chosen by solitons when

phase and intensity gradients are absent. Using the combined action of intensity

and phase gradients, we could demonstrate that the effect of these impurities can

be overcome, and a soliton can be moved from its original position defined by an

imperfection. This shows that the presence of defects, even if somehow useful in order

to observe stable structures in presence of spurious gradients, is not strictly necessary

for the existence of cavity solitons.

Analyzing the equilibrium positions of solitons in presence of intensity and phase

gradients, we have shown that it is possible to interpret the observations in terms

of the predictions of the theory, but taking into account the effect of defects is also

necessary. In fact the most probable interpretation is that solitons drift along the

phase and intensity gradients, accordingly to theory, but a third force due to attracting

defects is needed to explain in detail their behavior when the controlled gradients are

changed. Using the interplay between the effect of externally controlled gradients and

that of internal defects over the stable positions of solitons, we have then proposed a

method that, within some limitations for our systems, allows to visualize the cavity

imperfections of the device.

We have then focused the attention on the motion of localized structures in the

transverse plane. In order to make easier the detection of moving structures, we have

confined them along linear intensity channels formed by interference fringes on the

VCSEL plane. We have strong indications that motion of localized structures inside

the intensity fringe occurs, and that an optical shift register based on localized struc-

tures is in principle feasible, increasing the interest of this system for real applications.

We have also described and characterized the phenomenology experimentally found

around the region of parameters where motion is observed. The observed displace-

ment of a localized structure over many tens of µm indicates again that imperfections

only have a stabilizing role, and are not required for cavity solitons to exist.
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We have on the contrary weak indications about the dependence of the speed of

the structures with the external gradients. In order to better connect the experimen-

tal observations with the theoretical predictions, and also from the point of view of

possible applications, it will be important in the future to better quantify how the

magnitude of the velocity of the drifting structures depends on the strength of the

applied gradients. This could be done, with a fine control of the double holding beam

injection (that was not possible at present), relating the information about the phase

gradient along the intensity fringes, extracted from the far field, with the measured

speed.

Finally we made efforts in building an experimental system that could provide a

separate control of the phase and intensity of the injection. In this way we could

generate an arbitrary profile for the injected phase, with a small spurious amplitude

component that however can be reduced giving similar results. Applying this spa-

tial modulation to the injection beam, we could fix the positions of many solitons in

different configurations (hexagonal and square). This demonstrates in principle the

pinning effect of a transverse parametric modulation (mainly phase) in semiconduc-

tors, as predicted by the theoretical results.

All these experimental results encourage further research on the properties of cavity

solitons in VCSELs, showing that applications, that ultimately need their positioning

or drifting, are in principle possible. As now the long-scale defects have been elimi-

nated from the semiconductors growth process, the main limiting factors seem to be

the small-scale imperfections of the cavity that narrow the effective transverse plane

hosting solitons. In order to experimentally overcome the effects of imperfections it

could be useful in the future to develop the spatial modulator in order to achieve

higher phase variations. Hopefully this system will make possible to better control

the applied gradients and to better understand the properties of the system.
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[98] B. Schäpers, M. Feldmann, T. Ackemann, and W. Lange. Interaction of localized

structures in an optical pattern-forming system. Phys. Rev. Lett., 85(4):748–751,

Jul 2000.

[99] Yu. A. Astrov and Yu. A. Logvin. Formation of clusters of localized states

in a gas discharge system via a self-completion scenario. Phys. Rev. Lett.,

79(16):2983–2986, Oct 1997.
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