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Excitable particles in an optical torque wrench
Francesco Pedaci1†, Zhuangxiong Huang1†, Maarten van Oene1, Stephane Barland2

and Nynke H. Dekker1*

The optical torque wrench is a laser trapping technique capable of applying and directly measuring torque on microscopic
birefringent particles using spin momentum transfer, and has found application in the measurement of static torsional
properties of biological molecules such as single DNAs. Motivated by the potential of the optical torque wrench to access
the fast rotational dynamics of biological systems, a result of its all-optical manipulation and detection, we focus on the
angular dynamics of the trapped birefringent particle, demonstrating its excitability in the vicinity of a critical point. This links
the optical torque wrench to nonlinear dynamical systems such as neuronal and cardiovascular tissues, nonlinear optics and
chemical reactions, all of which display an excitable binary (‘all-or-none’) response to input perturbations. On the basis of this
dynamical feature, we devise and implement a conceptually new sensing technique capable of detecting single perturbation
events with high signal-to-noise ratio and continuously adjustable sensitivity.

The past two decades have witnessed the development of
new physical techniques such as atomic force microscopy,
magnetic tweezers and optical tweezers that allow the me-

chanical manipulation and measurement of microscopic actua-
tors. When connected to individual biomolecules, these actuators,
which control physical parameters such as the applied force at
the piconewton level and molecular extension at the nanometre
scale, directly report on their physical properties allowing bio-
logical systems to be studied in a direct, quantitative manner in
real time1,2. Torque is a further physical parameter of biological
relevance, as witnessed by its role in diverse cellular processes
such as DNA replication3 and transcription4, ATP synthesis5 and
bacterial propulsion6. For this reason, there is growing interest in
the development of single-molecule techniques that allow modifi-
cation and simultaneous measurement of force and torque7–11. To
achieve this, one method is to combine the high spatio-temporal
resolution of optical tweezers with the angular control of tailored
microscopic birefringent particles in the so-called optical torque
wrench8,12–14 (OTW). However, although much knowledge has
been gained about linear optical tweezers, its angular counterpart
remains largely unexplored, a consequence of its more recent
development and remaining technical challenges.

Here we focus on the fast dynamical capabilities of optical
tweezers and show that the torque dynamics of the system casts
the OTW within the general class of excitable dynamical systems.
Both analytically and experimentally, we show that the OTW
is dynamically equivalent to a microscopic version of the Adler
system15, one of the simplest and most widely studied models
for the excitable spiking of a neuron16. Since its discovery in the
seminal studies of spiking neurons17, excitability has been identified
as a feature of several nonlinear dynamical systems ubiquitous in
science18–25. The excitable character of a system is defined by its
response to external perturbations: perturbations smaller than a
certain value produce a small linear response around the stable (or
‘rest’) state, whereas large perturbations force the system to undergo
a large deterministic excursion in the phase space before returning
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to the stable state again. This excursion, often measured as a spike,
is deterministic and independent of the perturbation, provided that
it overcomes the so-called excitability threshold.

Rotational dynamics of birefringent particles
Our demonstration that the angular dynamics of a birefringent
particle trapped in an OTW can be described by these physical
principles starts by rotationally forcing a nano-fabricated quartz
cylinder by applying a linear laser polarization rotating at constant
frequency f =ω/2π in an OTW (Fig. 1a). The response of themean
value of the transferred torque as a function of f (Fig. 1b) clearly
indicates the presence of two distinctive regimes: for frequencies
|f |< fcexp= 35.5 (±0.5) Hz, the absolute value of the mean torque
increases linearly with the imposed frequency; however, further in-
creasing |f | beyond fcexp results in a decay of the absolute value of the
mean torque to zero (negative frequencies indicate rotation in the
opposite direction). This behaviour is typical of rotationally forced
systems, with optical12,26–28, magnetic29,30 or magneto-mechanic24
forcing. The physical reason for the decrease of the average torque
for |f |> fcexp becomes clear by looking at its temporally resolved
signal: beyond the linear region (Fig. 1c), the drag torque acting
on the rotating cylinder exceeds the maximum torque that can
be transferred by the laser polarization, inducing a phase slip
between the particle’s extraordinary axis and the polarization. This
event appears as a spike in the torque signal (Fig. 1d). At higher
frequencies the particle is incapable of following the polarization
and remains quasi-static under the scanning polarization, giving
rise to a quasi-sinusoidal torque signal (Fig. 1e).

These observations can be quantitatively understood by starting
from the analytical expression for the torque optically transferred to
the birefringent particle, which can be written7 as

τopt=−τo sin(2(θ−θo))

where τo = Sε/(2Ω)Eo
2 sin(kL1n). Here S is the particle cross-

sectional area, ε is the permittivity, Ω is the laser optical frequency,
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Figure 1 |Measurements of torque on a birefringent particle. a, Schematic of a birefringent cylinder forced by a rotating linear polarization in an optical
trap. b, Mean value of the measured torque as a function of the polarization rotation frequency f. c–e, Torque as a function of time (black) corresponding to
the points indicated by red circles in b. The relative polarization angle is depicted in red.

θ−θo is the angle between the extraordinary axis of the particle (θ)
and the polarization (θo), k is the wave vector, L is the length of
the cylindrical particle, 1n= 0.009 is the quartz birefringence and
a linear input polarization is assumed. When the input polarization
is rotated such that θo=ωt , the equation ofmotion can be rewritten
in the rotating reference frame by defining x=θ−ωt , yielding

ẋ =−
τo

γ
sin(2x)−ω (1)

where γ is the rotational drag coefficient and where inertial effects
are neglected as the Reynolds number is ≈10−4. Equation (1) was
introduced by Adler in his seminal study of locking phenomena in
oscillators15 and is a classic example of how complex behaviour can
arise from a relatively simple law.

From this equation, we expect that the behaviour of the
rotationally forced microscopic system, which is periodic in x and
therefore analogous to the motion of a particle on a circle, can be
described in terms of the potential V (x), defined as ẋ =−V ′(x)
(Fig. 2). For ω<ωc= τo/γ , one stable and one unstable stationary
solution coexist (Fig. 2, red lines and corresponding phase plots).
In this regime the system is excitable: a perturbation on the stable
solution that overcomes the threshold (defined by the potential
barrier between the two stationary points) will be followed by a
large deterministic trajectory (the ‘firing state’) back to the stable
point (the ‘resting state’) in which the rotation of the particle is once
more in phase with the polarization. On further increasing ω, the
two stationary solutions merge through saddle-node bifurcation at

|ω| = ωc (Fig. 2, black line and corresponding phase plot), giving
rise to a limit cycle (Fig. 2, blue lines), that is, to periodic spiking
at constant amplitude that is initially at infinitely low frequency
and becomes sinusoidal in the limit of infinite ω (Supplementary
Information SI). Thus, the observed dynamical response (Fig. 1) is
capturedwell by the behaviour predicted by equation (1).

Experimental demonstration of excitability
To further test the validity of this model, which predicts excitability
in the region ω < ωc, we study the response of the system to
controlled external perturbations (Fig. 3). Thus we first prepare the
system below the critical point (f ∼< fcexp) where torque spikes are
not present. A perturbation is then periodically inserted into the
EOM voltage at the times indicated by red dots in the top-left time
traces (Fig. 3a–c). As a result of the perturbation, the polarization
phase θo undergoes a sudden jump (in less than 10 µs) of controlled
amplitude φP (θo = ωt +φP with φP = [0,1.08] rad). We observe
that small amplitude perturbations (φP < 0.2 rad, Fig. 3a) do not
trigger torque spikes in the system’s response, whereas stronger
perturbations do induce torque spikes whose amplitude does
not depend on the perturbation (Fig. 3b,c). The probability of
triggering torque spikes rises steeply with increased perturbation
amplitude (blue circles in Fig. 3d), indicating the existence of a
threshold separating a ‘resting’ from a ‘firing’ state. In the right
panels of Fig. 3a–c we zoom in on a collection of torque signals
acquired after repeatedly imposing single perturbations triggered
at t = 0. This shows that the response of the system to sufficiently
strong perturbations varies only in the delay between the trigger and
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Figure 2 | The potential experienced by the birefringent particle, and
corresponding phase plots. For different values of ω, we plot the potential
V(x) experienced by the birefringent particle (ω<ωc, red lines; ω=ωc,
black line; ω>ωc, blue lines) as a function of the angular coordinate in the
rotating reference frame x. For these three regimes, we plot representative
circular phase plots and indicate the system’s fixed points by coloured dots
(where a white dot represents the stable fixed point and a red dot
represents the unstable fixed point). In a noise-free system, the bifurcation
at ω=ωc, evidenced by both the lack of a potential minimum and by the
merging of the two fixed points in the phase plot, separates the excitable
region at ω<ωc from the periodically modulated one at ω>ωc. Here
τo/γ = 1 and ω= [0,0.5,1,2,6]ωc from light-red to light-blue.

the response. This delay has both a deterministic component (larger
perturbations leading to shorter delay), and a stochastic one due to
thermal noise (Supplementary Information SIV). Importantly, the
superposition of all the excited torque spikes (Fig. 3e) reveals that
the pulse shape is highly conserved even when a strong stochastic
component is present in the timing, which shows that the path
followed by the system during an event is deterministic, as expected
for an excitable response. These measurements clearly indicate a
binary (‘all-or-none’) response to external perturbations as well
as the existence of a threshold beyond which a deterministic path
drives the systemback to the stable state, both characteristic features
of an excitable system.

We can deepen our understanding of this physical system
by modelling both the excitation probability as a function
of the amplitude φP of the imposed perturbation as well as
the temporal behaviour of the deterministic torque trajectory.
Following previous work on stochastic effects in excitable systems31,
we derive an analytical expression for the probability to excite a
torque spike as a function of the amplitude φP of the imposed
perturbation (Supplementary Information SII), as

P(φP)=
1
2
[−erf(−A(φP−B))] (2)

where A =
√
τo/(2kBT )[1 − (ω/ωc)2]1/4, B = arccos(ω/ωc) and

kBT = 4.1 pN nm is the thermal energy. Fitting the data in
Fig. 3d with equation (2) (red line), we find that ω= 0.90ωc and
τo=1,150 pNnm,where the latter is in excellent agreement with the
maximum value of the torque measured experimentally (Fig. 1d,e).
We note that the response of an externally driven excitable system
can in general be more complex than the 1:1 locking ratio between
the perturbation frequency and the system’s torque spike response
observed in Fig. 3d (ref. 20). The sigmoidal response observed
is a particular case that can be successfully modelled by the
dephasing action of thermal noise over the long perturbation period
chosen (two orders of magnitude longer than the deterministic

pulse duration). On reduction of the perturbation period, different
locking ratios can be observed (Supplementary Information SIII).
Furthermore, one can derive an expression for the deterministic
trajectory of a torque spike by solving equation (1) (Supplementary
Information SI), which yields

τ

τ0
=−sin(2x)=

cot2(x+ π4 )−1
cot2(x+ π4 )+1

(3)

where cot(x + π/4) =
√
(ωc+ω)/(ωc−ω)[(exp(2

√
ωc

2−ω2

(t−to))−1)/(exp(2
√
ωc

2−ω2(t−to))+1)]' (ωc+ω)(t−to), to is
the time at which the peak torque is reached, and the approximation
is valid when ω ∼<ωc . The measured torque trajectory during one
‘firing’ event is excellently fitted by this analytical expression, as
shown by the red line in Fig. 3e.

Effects of thermal noise
Interestingly, the microscopic scale at which these experiments
are carried out implies that thermal noise itself can also act as
a perturbation to trigger the excitable response of the system,
provided that the excitability threshold is comparable to the
amplitude of thermal fluctuations. Such thermally-excited events
triggered below the critical point are indeed observed (Fig. 1d).
Their interspike time probability distribution, a characteristic
feature of noise-driven excitable pulses23, is shown in Fig. 4. At long
time intervals, this distribution displays the typical exponential tail
described by Kramer’s escape rate, whereas at short time intervals
the low probabilities indicate that two successive spikes are always
separated by at least a minimum amount of time, proportional
to the period of revolution of the polarization. This minimum
time interval corresponds to the time needed for the system to
return to the rest state after the emission of a spike and is termed
the refractory time, t0. For ω <ωc, the probability distribution of
interspike times is given by31

P(t )=AW̃tre−Kt (4)

where W̃tr=exp(−(e2λ(s−to)−1)/(e2λ(t−to)−1)ln2)(1−e−2λ(t−to))−1/2,
λ = 2

√
ωc

2−ω2, K is the Kramer decay rate, s is the midpoint
of the step-like function W̃tr, and A is a normalization constant
(Supplementary Information SIV). This expression describes
the experimentally-determined probability distribution very well
(red line in Fig. 4).

A further effect of thermal noise is to strongly perturb the
periodicity of the deterministic solution for values of ω slightly
greater than ωc, where particularly shallow regions of the potential
near x =Nπ render the system sensitive to thermal fluctuations24.
As a consequence, clear periodicity is experimentally observed only
for frequencies much higher than ωc, as shown in Fig. 1e. Thus, we
have clarified the origin of the nonlinear response of birefringent
cylinders rotated in an optical torque wrench to perturbations,
whether externally applied or of thermal origin.

Sensing through excitability
We now demonstrate the use of this excitable opto-mechanical
system as a new technique for the detection of transient changes in
the particle’s environment (Fig. 5). In particular, we demonstrate
how the rotating cylinder can detect changes in the local drag
resulting from the nearby presence of objects (for example surfaces
and micrometre-sized spheres), whose proximity effects can be
therefore quantified. The sensing principle relies on the readout
of identical torque spikes that span the entire torque range
from its minimum to its maximum value, optimizing signal-to-
noise. As the observation of spikes in the torque signal does not
depend strongly on imperfections in the detection and calibration
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Figure 3 |Demonstration of the excitability of a rotating birefringent cylinder in an optical torque wrench. a–c (left): while keeping f fixed at 31.25 Hz, a
perturbation φP is inserted into the rotating polarization at time-points indicated by the red dots, with its amplitude increasing from a to c. a–c (right): a
zoomed-in region of the left panels, showing both the rotating polarization including its perturbation (red line) as well as the torque response (blue line).
Here, the occurrence of each perturbation is defined as t=0 (red line), and the torque response from a large number of collected responses is plotted. One
can readily observe that the response is binary in the amplitude of the torque signal, and that the amplitude of the perturbation influences only the timing
of the response. d, The probability of successful excitation of one spike as a function of the perturbation amplitude φP. The red line is the fit to equation (2).
e, The superposition (dots) of the events (triggered in b) is fitted by equation (3) (red line), with τo= 1,200 pN nm, ωc= (2π)38 rad s−1 and to=6.3 ms.

(in contrast to linear detection approaches), this approach is
also robust. Interestingly, as torque spikes can be excited by
perturbations that overcome the excitability threshold, sensitivity
can be continuously tuned by varying the threshold value, which is
experimentally accessible using the parameter ω. Furthermore, we
demonstrate that torque spike frequency increases with increased
perturbations, a generic feature of systems that present a saddle-
node bifurcation on an invariant circle (for example ‘integrator’
neurons, which encode the intensity of the stimulation received into
their mean firing rate16).

By first monitoring the approach of a cylinder with respect to
the bottom surface of the flow cell (Fig. 5a, red line and inset), we
analyse the full spectrum of torque responses, and, in doing so,
demonstrate a measurement of the local drag encountered by the
cylinder (Fig. 5a–d). Setting ω<ωc

exp so that the isolated excitable
cylinder will be insensitive to thermal fluctuations, we record both
the position of the cylinder in the optical trap (Fig. 5a, blue points)
and the corresponding torque signal (Fig. 5b). When the cylinder is
far from the surface, it is located at the trap centre and the torque
signal is initially featureless. However, as the cylinder approaches
the surface, torque spikes make their appearance (Fig. 5b, region
near 8 s). Subsequently, as the cylinder starts to enters into
contact with the surface (at the positions indicated by dashed
grey lines in Fig. 5a–d), it is displaced relative to the centre of
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Figure 4 | Probability distribution for the interspike time of events
triggered by thermal noise. Here, the value of f (34.5 Hz) is selected such
that the excitability threshold is readily overcome by thermal events (see
sketch of the potential V(x) and of the torque interspike time T in the
inset). The red line fits the data using equation (4) with s=42 ms,
to= 13 ms, λ=60 Hz, K= (35 ms)−1. The observed probability distribution
also confirms the negligible role of inertia in the dynamics of this system, as
otherwise a second peak would become observable31.
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Figure 5 | Sensing through excitability. a–d, Vertical motion of the excitable particle towards a surface (followed by its reverse trajectory). a, A trapped
birefringent cylinder is constantly rotated at a sub-critical frequency (ω/2π= 35 Hz, 80% of ωc measured in bulk) while the trap is approached towards
the glass surface of the flow cell (inset). The relative distance of the trap from the surface is shown in red. The recorded signal of the vertical displacement
of the cylinder from the trap centre is shown in blue and its deviations from zero indicate contact with the surface, in which the particle exerts a restoring
force on the surface of maximally a few piconewtons. b, Torque signal recorded during the vertical movement. Insets: Zooms of the trace at three different
points along the trajectory and its reversal; timescales for zooms are indicated in seconds. c, (Blue points) Ratio of the measured quasi-instantaneous spike
frequency and polarization rotation ω. An increase in this ratio corresponds to a decrease in ωc or equivalently an increase in drag. Transient sticking to the
surface (or equivalently a transiently infinite drag) is visible at the points where this ratio becomes equal to 1. (Red points) Ratio of the measured critical
frequency ωc(z) and the polarization rotation frequency ω. The critical frequency can be deduced from the torque signal in b, both before and after the
bifurcation at ωc/ω= 1 (Supplementary Information SVII). d, Rotational drag along the trajectory, calculated using the value of ωc in c. e,f, Sensing a
moving object through proximity effects. e, A 2 µm diameter bead fixed to the glass surface (large yellow circle, left) is moved at constant speed along the
white line, while the excitable cylinder (small yellow circle, right) is kept in rotation at a sub-critical frequency. f, The torque traces along the path are
shown for different values of distance d. Proximity effects (for example transient increases of the drag coefficient) effectively lower the potential barrier,
which keeps the rotation of the cylinder in phase with the laser polarization, translating into large torque spikes. For all figure panels, we have fixed the
maximum applicable torque τo as well as the cylinder rotation frequency ω dictated by the EOM.

the optical trap (Fig. 5a, blue points in region labelled ‘contact’).
These torque spikes report on the occurrence of the bifurcation
in this excitable system (that is ω = ωc). Their frequency, ωspike,
depends on the relative distance between the rotating cylinder
and the surface (Fig. 5b, blue spikes in insets). By local averaging,
we determine the dependence of the nearly-instantaneous spike
frequency ωspike on the relative distance from the surface (Fig. 5c,
blue points), which illustrates that ωspike approaches ω as the
cylinder is pressed into the surface.

The varying character of the torque spikes as the cylinder
approaches a surface can be understood as follows. First, the spike
frequency encodes information on the system’s critical frequency,
ωc(z): specifically, ωspike∝

√
ω2−ωc(z)2 (Supplementary Informa-

tion SI). As the cylinder is brought into contact with the surface,
the system’s critical frequency decreases, becoming equal to ω and
then dropping beneath it (Fig. 5c, red points). Hence, the torque

signal displays thermally excited spikes when the cylinder is close to
the surface (whereω'ωc(z)) and periodic spikes when it is pressed
into tight contact with the surface (whereω�ωc(z)).

We can use the relationship γ (z)= τo/ωc(z) to determine how
the drag γ varies with the relative position of the particle and
the surface (Fig. 5d). According to Faxén’s law, the rotational drag
should increase in the vicinity of a surface32, as observed (Fig. 5d,
regions before contact indicated by grey lines). Further increase of
the drag is measured as the cylinder is brought into contact with
the surface and the pressure is increased. As the measurement of
the drag (Fig. 5d) and the position signal (Fig. 5a) demonstrate, we
do not observe permanent sticking of the particle after contact is
reached, probably as a result of the proteinaceous coating applied
to the inner flow cell surfaces in these experiments.

This well-understood sensitivity of the torque signal to changes
in the local drag can be employed for the detection of particles in the
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cylinder’s vicinity. To demonstrate this, we employ a polystyrene
bead (2 µm diameter, large yellow circle in Fig. 5e) fixed to the glass
surface as the source of the perturbation and scan the microscope
piezo-stage at constant velocity (over a total distance of 14 µmalong
x , white line in Fig. 5e), thereby simulating the presence of a flow-
driven bead in the sensor’s proximity. While doing so, we control
the lateral distance d (along y) between the surfaces of the cylinder
and the bead, while the trap is maintained '2 µm from the glass
surface. As above, we select ω<ωc

exp and record the torque signal
during themovement of the stuck bead for decreasing values of d .

As shown in the temporal traces (Fig. 5f), the proximity of the
bead can be easily recognized from the appearance of spikes, which
are excited in a region where the distance between the bead and
the cylinder is minimized. As expected, such a response by the
cylinder to an approaching object is observed only in the nonlinear
regime: when ω is reduced so as to induce a linear response, spikes
are absent and only a barely visible perturbation of the torque
signal is visible (data not shown). As such, a rotating birefringent
particle can be employed as a sensitive nonlinear detector, whereby
spatial localization of the sensor is assured with great accuracy by
the three-dimensional optical trap and its sensitivity exploits the
sensor’s excitable character.

Methods
To constitute the optical trap, the laser light (100mW at a wavelength of 1,064 nm)
is focused by a 1.49NA objective in a glass flow cell mounted on piezo-actuators.
We use a fast (∼MHz) electro-optical modulator (EOM) in combination with
a quarter-wave plate as a polarization control system14. As a result, the angle of
the linear polarization of the trapping laser field (ellipticity smaller than 5%) is
proportional to the voltage applied to the EOM in the angular range 0–π. To
continuously rotate the polarization at a constant rate f =ω/2π, we use a sawtooth
voltage signal of controlled frequency 2f . The torque transferred to the trapped
particle is measured optically by fast intensity detectors from the imbalance of the
two circular components of the polarization at the output of the trap7. The total
bandwidth of the detection system is 200 kHz, which readily allows sensitive torque
detection on sub-millisecond timescales and is key to our experiments. An input
polarization reference and a calibration procedure (similar to the one carried out
for linear optical tweezers12,33) are necessary to obtain the absolute value of the
applied torque in physical units. The birefringent particles employed are cylinders
of slightly conical shape (1.7 µm height, 0.9 µm larger diameter, 0.6 µm smaller
diameter), obtained by electron beam lithography on a quartz wafer. The advantage
of this technique over optical lithography13 lies in its finer control over dimensions
and accuracy. A detailed description of cylinder fabrication will be published
elsewhere (Z.H. et al., manuscript in preparation). The glass surface of the flow cell
is coated with BSA proteins immobilized by use of a nitrocellulose layer, to prevent
sticking with the quartz surface of the particles. The 2 µm bead is stuck to the glass
surface via the nitrocellulose layer.
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